Mean Free Path - Mean Free Path in Radiography

Mean Free Path in Radiography

In gamma-ray radiography the mean free path of a pencil beam of mono-energetic photons is the average distance a photon travels between collisions with atoms of the target material. It depends on the material and the energy of the photons:

where μ is the linear attenuation coefficient, μ/ρ is the mass attenuation coefficient and ρ is the density of the material. The Mass attenuation coefficient can be looked up or calculated for any material and energy combination using the NIST databases

In X-ray radiography the calculation of the mean free path is more complicated, because photons are not mono-energetic, but have some distribution of energies called spectrum. As photons move through the target material they are attenuated with probabilities depending on their energy, as a result their distribution changes in process called Spectrum Hardening. Because of Spectrum Hardening the mean free path of the X-ray spectrum changes with distance.

Sometimes one measures the thickness of a material in the number of mean free paths. Material with the thickness of one mean free path will attenuate 37% (1/e) of photons. This concept is closely related to Half-Value Layer (HVL); a material with a thickness of one HVL will attenuate 50% of photons. A standard x-ray image is a transmission image, a minus log of it is sometimes referred as number of mean free paths image.

Read more about this topic:  Mean Free Path

Famous quotes containing the words free and/or path:

    I am always glad to think that my education was, for the most part, informal, and had not the slightest reference to a future business career. It left me free and untrammeled to approach my business problems without the limiting influence of specific training.
    Alice Foote MacDougall (1867–1945)

    What is the use of going right over the old track again? There is an adder in the path which your own feet have worn. You must make tracks into the Unknown.
    Henry David Thoreau (1817–1862)