Definition
Given a topological space X, a subset A of X is meagre if it can be expressed as the union of countably many nowhere dense subsets of X. Dually, a comeagre set is one whose complement is meagre, or equivalently, the intersection of countably many sets with dense interiors.
A subset B of X is nowhere dense if there is no neighbourhood on which B is dense: for any nonempty open set U in X, there is a nonempty open set V contained in U such that V and B are disjoint.
The complement of a nowhere dense set is a dense set, but not every dense set is of this form. More precisely, the complement of a nowhere dense set is a set with dense interior.
Read more about this topic: Meagre Set
Famous quotes containing the word definition:
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)