Solving Maxwell's Equations
Maxwell's equations are partial differential equations that relate the electric and magnetic fields to each other and to the electric charges and currents. Often, the charges and currents are themselves dependent on the electric and magnetic fields via the Lorentz force equation and the constitutive relations. These all form a set of coupled partial differential equations, which are often very difficult to solve. In fact, the solutions of these equations encompass all the diverse phenomena in the entire field of classical electromagnetism. A thorough discussion is far beyond the scope of the article, but some general notes follow:
- Like any differential equation, boundary conditions and initial conditions are necessary for a unique solution. For example, even with no charges and no currents anywhere in spacetime, many solutions to Maxwell's equations are possible, not just the obvious solution E = B = 0. Another solution is E = constant, B = constant, while yet other solutions have electromagnetic waves filling spacetime. In some cases, Maxwell's equations are solved through infinite space, and boundary conditions are given as asymptotic limits at infinity. In other cases, Maxwell's equations are solved in just a finite region of space, with appropriate boundary conditions on that region: For example, the boundary could be an artificial absorbing boundary representing the rest of the universe, or periodic boundary conditions, or (as with a waveguide or cavity resonator) the boundary conditions may describe the walls that isolate a small region from the outside world.
- Jefimenko's equations (or the closely related Liénard–Wiechert potentials) are the explicit solution to Maxwell's equations for the electric and magnetic fields created by any given distribution of charges and currents. It assumes specific initial conditions to obtain the so-called "retarded solution", where the only fields present are the ones created by the charges. Jefimenko's equations are not so helpful in situations when the charges and currents are themselves affected by the fields they create.
- Numerical methods for differential equations can be used to approximately solve Maxwell's equations when an exact solution is impossible. These methods usually require a computer, and include the finite element method and finite-difference time-domain method. For more details, see Computational electromagnetics.
- Maxwell's equations seem overdetermined, in that they involve six unknowns (the three components of E and B) but eight equations (one for each of the two Gauss's laws, three vector components each for Faraday's and Ampere's laws). (The currents and charges are not unknowns, being freely specifiable subject to charge conservation.) This is related to a certain limited kind of redundancy in Maxwell's equations: It can be proven that any system satisfying Faraday's law and Ampere's law automatically also satisfies the two Gauss's laws, as long as the system's initial condition does. Although it is possible to simply ignore the two Gauss's laws in a numerical algorithm (apart from the initial conditions), the imperfect precision of the calculations can lead to ever-increasing violations of those laws. By introducing dummy variables characterizing these violations, the four equations become not overdetermined after all. The resulting formulation can lead to more accurate algorithms that take all four laws into account.
Read more about this topic: Maxwell's Equations
Famous quotes containing the words solving and/or maxwell:
“Will women find themselves in the same position they have always been? Or do we see liberation as solving the conditions of women in our society?... If we continue to shy away from this problem we will not be able to solve it after independence. But if we can say that our first priority is the emancipation of women, we will become free as members of an oppressed community.”
—Ruth Mompati (b. 1925)
“Poopsie, youre just an eight-ball with hips.”
—Griffin Jay, Maxwell Shane (19051983)