Maxwell's Equations - Limitations of The Maxwell Equations As A Theory of Electromagnetism

Limitations of The Maxwell Equations As A Theory of Electromagnetism

While Maxwell's equations (along with the rest of classical electromagnetism) are extraordinarily successful at explaining and predicting a variety of phenomena, they are not exact laws of the universe, but merely approximations. In some special situations, they can be noticeably inaccurate. Examples include extremely strong fields (see Euler–Heisenberg Lagrangian) and extremely short distances (see vacuum polarization). Moreover, various phenomena occur in the world even though Maxwell's equations predicts them to be impossible, such as "nonclassical light" and quantum entanglement of electromagnetic fields (see quantum optics). Finally, any phenomenon involving individual photons, such as the photoelectric effect, Planck's law, the Duane–Hunt law, single-photon light detectors, etc., would be difficult or impossible to explain if Maxwell's equations were exactly true, as Maxwell's equations do not involve photons. For the most accurate predictions in all situations, Maxwell's equations have been superseded by quantum electrodynamics.

Read more about this topic:  Maxwell's Equations

Famous quotes containing the words limitations, maxwell and/or theory:

    No man could bring himself to reveal his true character, and, above all, his true limitations as a citizen and a Christian, his true meannesses, his true imbecilities, to his friends, or even to his wife. Honest autobiography is therefore a contradiction in terms: the moment a man considers himself, even in petto, he tries to gild and fresco himself.
    —H.L. (Henry Lewis)

    They give me goose pimples on top of my goose pimples.
    Griffin Jay, Maxwell Shane (1905–1983)

    Won’t this whole instinct matter bear revision?
    Won’t almost any theory bear revision?
    To err is human, not to, animal.
    Robert Frost (1874–1963)