Maximal Ideal - Definition

Definition

There are other equivalent ways of expressing the definition of maximal one-sided and maximal two-sided ideals. Given a ring R and a proper ideal I of R (that is IR), I is a maximal ideal of R if any of the following equivalent conditions hold:

  • There exists no other proper ideal J of R so that IJ.
  • For any ideal J with IJ, either J = I or J = R.
  • The quotient ring R/I is a simple ring.

There is an analogous list for one-sided ideals, for which only the right-hand versions will be given. For a right ideal A of a ring R, the following conditions are equivalent to A being a maximal right ideal of R:

  • There exists no other proper right ideal B of R so that AB.
  • For any right ideal B with AB, either B = A or B = R.
  • The quotient module R/A is a simple right R module.

Maximal right/left/two-sided ideals are the dual notion to that of minimal ideals.

Read more about this topic:  Maximal Ideal

Famous quotes containing the word definition:

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)