Definition
There are other equivalent ways of expressing the definition of maximal one-sided and maximal two-sided ideals. Given a ring R and a proper ideal I of R (that is I ≠ R), I is a maximal ideal of R if any of the following equivalent conditions hold:
- There exists no other proper ideal J of R so that I ⊊ J.
- For any ideal J with I ⊆ J, either J = I or J = R.
- The quotient ring R/I is a simple ring.
There is an analogous list for one-sided ideals, for which only the right-hand versions will be given. For a right ideal A of a ring R, the following conditions are equivalent to A being a maximal right ideal of R:
- There exists no other proper right ideal B of R so that A ⊊ B.
- For any right ideal B with A ⊆ B, either B = A or B = R.
- The quotient module R/A is a simple right R module.
Maximal right/left/two-sided ideals are the dual notion to that of minimal ideals.
Read more about this topic: Maximal Ideal
Famous quotes containing the word definition:
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)