Matrix Addition - Entrywise Sum

Entrywise Sum

The usual matrix addition is defined for two matrices of the same dimensions. The sum of two m × n (pronounced "m by n") matrices A and B, denoted by A + B, is again an m × n matrix computed by adding corresponding elements:

\begin{align}
\bold{A}+\bold{B} & = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\
\end{bmatrix} +
\begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \\
\end{bmatrix} \\
& = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \\
\end{bmatrix} \\
\end{align}\,\!

For example:

 \begin{bmatrix} 1 & 3 \\ 1 & 0 \\ 1 & 2 \end{bmatrix}
+ \begin{bmatrix} 0 & 0 \\ 7 & 5 \\ 2 & 1 \end{bmatrix}
= \begin{bmatrix} 1+0 & 3+0 \\ 1+7 & 0+5 \\ 1+2 & 2+1 \end{bmatrix}
= \begin{bmatrix} 1 & 3 \\ 8 & 5 \\ 3 & 3 \end{bmatrix}

We can also subtract one matrix from another, as long as they have the same dimensions. AB is computed by subtracting corresponding elements of A and B, and has the same dimensions as A and B. For example:


\begin{bmatrix} 1 & 3 \\ 1 & 0 \\ 1 & 2
\end{bmatrix}
-
\begin{bmatrix} 0 & 0 \\ 7 & 5 \\ 2 & 1
\end{bmatrix}
=
\begin{bmatrix} 1-0 & 3-0 \\ 1-7 & 0-5 \\ 1-2 & 2-1
\end{bmatrix}
=
\begin{bmatrix} 1 & 3 \\ -6 & -5 \\ -1 & 1
\end{bmatrix}

Read more about this topic:  Matrix Addition

Famous quotes containing the word sum:

    Society does not consist of individuals but expresses the sum of interrelations, the relations within which these individuals stand.
    Karl Marx (1818–1883)