A Priori Information
Mathematical modeling problems are used often classified into black box or white box models, according to how much a priori information is available of the system. A black-box model is a system of which there is no a priori information available. A white-box model (also called glass box or clear box) is a system where all necessary information is available. Practically all systems are somewhere between the black-box and white-box models, so this concept is useful only as an intuitive guide for deciding which approach to take.
Usually it is preferable to use as much a priori information as possible to make the model more accurate. Therefore the white-box models are usually considered easier, because if you have used the information correctly, then the model will behave correctly. Often the a priori information comes in forms of knowing the type of functions relating different variables. For example, if we make a model of how a medicine works in a human system, we know that usually the amount of medicine in the blood is an exponentially decaying function. But we are still left with several unknown parameters; how rapidly does the medicine amount decay, and what is the initial amount of medicine in blood? This example is therefore not a completely white-box model. These parameters have to be estimated through some means before one can use the model.
In black-box models one tries to estimate both the functional form of relations between variables and the numerical parameters in those functions. Using a priori information we could end up, for example, with a set of functions that probably could describe the system adequately. If there is no a priori information we would try to use functions as general as possible to cover all different models. An often used approach for black-box models are neural networks which usually do not make assumptions about incoming data. The problem with using a large set of functions to describe a system is that estimating the parameters becomes increasingly difficult when the amount of parameters (and different types of functions) increases.
Read more about this topic: Mathematical Model
Famous quotes containing the words priori and/or information:
“The a priori method is distinguished for its comfortable conclusions. It is the nature of the process to adopt whatever belief we are inclined to, and there are certain flatteries to the vanity of man which we all believe by nature, until we are awakened from our pleasing dream by rough facts.”
—Charles Sanders Peirce (18391914)
“If you have any information or evidence regarding the O.J. Simpson case, press 2 now. If you are an expert in fields relating to the O.J. Simpson case and would like to offer your services, press 3 now. If you would like the address where you can send a letter of support to O.J. Simpson, press 1 now. If you are seeking legal representation from the law offices of Robert L. Shapiro, press 4 now.”
—Advertisement. Aired August 8, 1994 by Tom Snyder on TV station CNBC. Chicago Sun Times, p. 11 (July 24, 1994)