Mathematical Logic - Proof Theory and Constructive Mathematics

Proof Theory and Constructive Mathematics

Proof theory is the study of formal proofs in various logical deduction systems. These proofs are represented as formal mathematical objects, facilitating their analysis by mathematical techniques. Several deduction systems are commonly considered, including Hilbert-style deduction systems, systems of natural deduction, and the sequent calculus developed by Gentzen.

The study of constructive mathematics, in the context of mathematical logic, includes the study of systems in non-classical logic such as intuitionistic logic, as well as the study of predicative systems. An early proponent of predicativism was Hermann Weyl, who showed it is possible to develop a large part of real analysis using only predicative methods (Weyl 1918).

Because proofs are entirely finitary, whereas truth in a structure is not, it is common for work in constructive mathematics to emphasize provability. The relationship between provability in classical (or nonconstructive) systems and provability in intuitionistic (or constructive, respectively) systems is of particular interest. Results such as the Gödel–Gentzen negative translation show that it is possible to embed (or translate) classical logic into intuitionistic logic, allowing some properties about intuitionistic proofs to be transferred back to classical proofs.

Recent developments in proof theory include the study of proof mining by Ulrich Kohlenbach and the study of proof-theoretic ordinals by Michael Rathjen.

Read more about this topic:  Mathematical Logic

Famous quotes containing the words proof, theory, constructive and/or mathematics:

    If any doubt has arisen as to me, my country [Virginia] will have my political creed in the form of a “Declaration &c.” which I was lately directed to draw. This will give decisive proof that my own sentiment concurred with the vote they instructed us to give.
    Thomas Jefferson (1743–1826)

    Many people have an oversimplified picture of bonding that could be called the “epoxy” theory of relationships...if you don’t get properly “glued” to your babies at exactly the right time, which only occurs very soon after birth, then you will have missed your chance.
    Pamela Patrick Novotny (20th century)

    Work is a responsibility most adults assume, a burden at times, a complication, but also a challenge that, like children, requires enormous energy and that holds the potential for qualitative, as well as quantitative, rewards. Isn’t this the only constructive perspective for women who have no choice but to work? And isn’t it a more healthy attitude for women writhing with guilt because they choose to compound the challenges of motherhood with work they enjoy?
    Melinda M. Marshall (20th century)

    It is a monstrous thing to force a child to learn Latin or Greek or mathematics on the ground that they are an indispensable gymnastic for the mental powers. It would be monstrous even if it were true.
    George Bernard Shaw (1856–1950)