Foundations of Mathematics
In the 19th century, mathematicians became aware of logical gaps and inconsistencies in their field. It was shown that Euclid's axioms for geometry, which had been taught for centuries as an example of the axiomatic method, were incomplete. The use of infinitesimals, and the very definition of function, came into question in analysis, as pathological examples such as Weierstrass' nowhere-differentiable continuous function were discovered.
Cantor's study of arbitrary infinite sets also drew criticism. Leopold Kronecker famously stated "God made the integers; all else is the work of man," endorsing a return to the study of finite, concrete objects in mathematics. Although Kronecker's argument was carried forward by constructivists in the 20th century, the mathematical community as a whole rejected them. David Hilbert argued in favor of the study of the infinite, saying "No one shall expel us from the Paradise that Cantor has created."
Mathematicians began to search for axiom systems that could be used to formalize large parts of mathematics. In addition to removing ambiguity from previously-naive terms such as function, it was hoped that this axiomatization would allow for consistency proofs. In the 19th century, the main method of proving the consistency of a set of axioms was to provide a model for it. Thus, for example, non-Euclidean geometry can be proved consistent by defining point to mean a point on a fixed sphere and line to mean a great circle on the sphere. The resulting structure, a model of elliptic geometry, satisfies the axioms of plane geometry except the parallel postulate.
With the development of formal logic, Hilbert asked whether it would be possible to prove that an axiom system is consistent by analyzing the structure of possible proofs in the system, and showing through this analysis that it is impossible to prove a contradiction. This idea led to the study of proof theory. Moreover, Hilbert proposed that the analysis should be entirely concrete, using the term finitary to refer to the methods he would allow but not precisely defining them. This project, known as Hilbert's program, was seriously affected by Gödel's incompleteness theorems, which show that the consistency of formal theories of arithmetic cannot be established using methods formalizable in those theories. Gentzen showed that it is possible to produce a proof of the consistency of arithmetic in a finitary system augmented with axioms of transfinite induction, and the techniques he developed to so do were seminal in proof theory.
A second thread in the history of foundations of mathematics involves nonclassical logics and constructive mathematics. The study of constructive mathematics includes many different programs with various definitions of constructive. At the most accommodating end, proofs in ZF set theory that do not use the axiom of choice are called constructive by many mathematicians. More limited versions of constructivism limit themselves to natural numbers, number-theoretic functions, and sets of natural numbers (which can be used to represent real numbers, facilitating the study of mathematical analysis). A common idea is that a concrete means of computing the values of the function must be known before the function itself can be said to exist.
In the early 20th century, Luitzen Egbertus Jan Brouwer founded intuitionism as a philosophy of mathematics. This philosophy, poorly understood at first, stated that in order for a mathematical statement to be true to a mathematician, that person must be able to intuit the statement, to not only believe its truth but understand the reason for its truth. A consequence of this definition of truth was the rejection of the law of the excluded middle, for there are statements that, according to Brouwer, could not be claimed to be true while their negations also could not be claimed true. Brouwer's philosophy was influential, and the cause of bitter disputes among prominent mathematicians. Later, Kleene and Kreisel would study formalized versions of intuitionistic logic (Brouwer rejected formalization, and presented his work in unformalized natural language). With the advent of the BHK interpretation and Kripke models, intuitionism became easier to reconcile with classical mathematics.
Read more about this topic: Mathematical Logic
Famous quotes containing the words foundations of, foundations and/or mathematics:
“The world must be made safe for democracy. Its peace must be planted upon the tested foundations of political liberty.”
—Woodrow Wilson (18561924)
“For me, it is as though at every moment the actual world had completely lost its actuality. As though there was nothing there; as though there were no foundations for anything or as though it escaped us. Only one thing, however, is vividly present: the constant tearing of the veil of appearances; the constant destruction of everything in construction. Nothing holds together, everything falls apart.”
—Eugène Ionesco (b. 1912)
“In mathematics he was greater
Than Tycho Brahe, or Erra Pater:
For he, by geometric scale,
Could take the size of pots of ale;
Resolve, by sines and tangents straight,
If bread and butter wanted weight;
And wisely tell what hour o th day
The clock doth strike, by algebra.”
—Samuel Butler (16121680)