Mathematical Induction - Proof of Mathematical Induction

Proof of Mathematical Induction

The principle of mathematical induction is usually stated as an axiom of the natural numbers; see Peano axioms. However, it can be proved in some logical systems. For instance, it can be proved if one assumes:

  • The set of natural numbers is well-ordered.
  • Every natural number is either zero, or n+1 for some natural number n.
  • For any natural number n, n+1 is greater than n.

To derive simple induction from these axioms, we must show that if P(n) is some proposition predicated of n, and if:

  • P(0) holds and
  • whenever P(k) is true then P(k+1) is also true

then P(n) holds for all n.

Proof. Let S be the set of all natural numbers for which P(n) is false. Let us see what happens if we assert that S is nonempty. Well-ordering tells us that S has a least element, say t. Moreover, since P(0) is true, t is not 0. Since every natural number is either zero or some n+1, there is some natural number n such that n+1=t. Now n is less than t, and t is the least element of S. It follows that n is not in S, and so P(n) is true. This means that P(n+1) is true, and so P(t) is true. This is a contradiction, since t was in S. Therefore, S is empty.

It can also be proved that induction, given the other axioms, implies well-ordering.

Read more about this topic:  Mathematical Induction

Famous quotes containing the words proof of, proof, mathematical and/or induction:

    Ah! I have penetrated to those meadows on the morning of many a first spring day, jumping from hummock to hummock, from willow root to willow root, when the wild river valley and the woods were bathed in so pure and bright a light as would have waked the dead, if they had been slumbering in their graves, as some suppose. There needs no stronger proof of immortality. All things must live in such a light. O Death, where was thy sting? O Grave, where was thy victory, then?
    Henry David Thoreau (1817–1862)

    The insatiable thirst for everything which lies beyond, and which life reveals, is the most living proof of our immortality.
    Charles Baudelaire (1821–1867)

    The circumstances of human society are too complicated to be submitted to the rigour of mathematical calculation.
    Marquis De Custine (1790–1857)

    One might get the impression that I recommend a new methodology which replaces induction by counterinduction and uses a multiplicity of theories, metaphysical views, fairy tales, instead of the customary pair theory/observation. This impression would certainly be mistaken. My intention is not to replace one set of general rules by another such set: my intention is rather to convince the reader that all methodologies, even the most obvious ones, have their limits.
    Paul Feyerabend (1924–1994)