Mathematical Fallacy - Multivalued Functions

Multivalued Functions

Many functions do not have a unique inverse. For instance squaring a number gives a unique value, but there are two possible square roots of a positive number. The square root is multivalued. One value can be chosen by convention as the principal value, in the case of the square root the non-negative value is the principal value, but there is no guarantee that the square root function given by this principal value of the square of a number will be equal to the original number, e.g. the square root of the square of −2 is 2.

Read more about this topic:  Mathematical Fallacy

Famous quotes containing the word functions:

    Nobody is so constituted as to be able to live everywhere and anywhere; and he who has great duties to perform, which lay claim to all his strength, has, in this respect, a very limited choice. The influence of climate upon the bodily functions ... extends so far, that a blunder in the choice of locality and climate is able not only to alienate a man from his actual duty, but also to withhold it from him altogether, so that he never even comes face to face with it.
    Friedrich Nietzsche (1844–1900)