Material Derivative - Definition

Definition

The material derivatives of a scalar field φ( x, t ) and a vector field u( x, t ) are defined respectively as:

where the distinction is that is the gradient of a scalar, while is the covariant derivative of a vector. In case of the material derivative of a vector field, the term v•∇u can both be interpreted as v•(∇u) involving the tensor derivative of u, or as (v•∇)u, leading to the same result.

Confusingly, the term convective derivative is both used for the whole material derivative Dφ/Dt or Du/Dt, and for only the spatial rate of change part, v•∇φ or v•∇u respectively. For that case, the convective derivative only equals D/Dt for time independent flows.

These derivatives are physical in nature and describe the transport of a scalar or vector quantity in a velocity field v( x, t ). The effect of the time independent terms in the definitions are for the scalar and vector case respectively known as advection and convection.

Read more about this topic:  Material Derivative

Famous quotes containing the word definition:

    One definition of man is “an intelligence served by organs.”
    Ralph Waldo Emerson (1803–1882)

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)