Definition
The material derivatives of a scalar field φ( x, t ) and a vector field u( x, t ) are defined respectively as:
where the distinction is that is the gradient of a scalar, while is the covariant derivative of a vector. In case of the material derivative of a vector field, the term v•∇u can both be interpreted as v•(∇u) involving the tensor derivative of u, or as (v•∇)u, leading to the same result.
Confusingly, the term convective derivative is both used for the whole material derivative Dφ/Dt or Du/Dt, and for only the spatial rate of change part, v•∇φ or v•∇u respectively. For that case, the convective derivative only equals D/Dt for time independent flows.
These derivatives are physical in nature and describe the transport of a scalar or vector quantity in a velocity field v( x, t ). The effect of the time independent terms in the definitions are for the scalar and vector case respectively known as advection and convection.
Read more about this topic: Material Derivative
Famous quotes containing the word definition:
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)
“It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possessafter many mysterieswhat one loves.”
—François, Duc De La Rochefoucauld (16131680)