In aerospace engineering, mass ratio is a measure of the efficiency of a rocket. It describes how much more massive the vehicle is with propellant than without; that is, it is the ratio of the rocket's wet mass (vehicle plus contents plus propellant) to its dry mass (vehicle plus contents). A more efficient rocket design requires less propellant to achieve a given goal, and would therefore have a lower mass ratio, however for any given efficiency a higher mass ratio typically permits the vehicle to achieve higher delta-v.
The mass ratio is a useful quantity for back-of-the-envelope rocketry calculations: it is an easy number to derive from either numbers or from rocket and propellant mass numbers, and therefore serves as a handy bridge between the two. It is also a useful number to give an impression of the size of a rocket: while two rockets with mass fractions of, say, 92% and 95% may appear similar, the corresponding mass ratios of 12.5 and 20 clearly indicate that the latter system requires much more propellant.
Typical multistage rockets have mass ratios in the range from 8 to 20. The Space Shuttle, for example, has a mass ratio around 16.
Read more about Mass Ratio: Derivation
Famous quotes containing the words mass and/or ratio:
“If all feeling for grace and beauty were not extinguished in the mass of mankind at the actual moment, such a method of locomotion as cycling could never have found acceptance; no man or woman with the slightest aesthetic sense could assume the ludicrous position necessary for it.”
—Ouida [Marie Louise De La Ramée] (18391908)
“Official dignity tends to increase in inverse ratio to the importance of the country in which the office is held.”
—Aldous Huxley (18941963)