Markov Chain - General State Space

General State Space

Many results for Markov chains with finite state space can be generalized to chains with uncountable state space through Harris chains. The main idea is to see if there is a point in the state space that the chain hits with probability one. Generally, it is not true for continuous state space, however, we can define sets A and B along with a positive number ε and a probability measure ρ, such that

Then we could collapse the sets into an auxiliary point α, and a recurrent Harris chain can be modified to contain α. Lastly, the collection of Harris chains is a comfortable level of generality, which is broad enough to contain a large number of interesting examples, yet restrictive enough to allow for a rich theory.

Read more about this topic:  Markov Chain

Famous quotes containing the words general, state and/or space:

    Hence that general is skilful in attack whose opponent does not know what to defend; and he is skilful in defense whose opponent does not know what to attack.
    Sun Tzu (6th–5th century B.C.)

    [The Republicans] offer ... a detailed agenda for national renewal.... [On] reducing illegitimacy ... the state will use ... funds for programs to reduce out-of-wedlock pregnancies, to promote adoption, to establish and operate children’s group homes, to establish and operate residential group homes for unwed mothers, or for any purpose the state deems appropriate. None of the taxpayer funds may be used for abortion services or abortion counseling.
    Newt Gingrich (b. 1943)

    But alas! I never could keep a promise. I do not blame myself for this weakness, because the fault must lie in my physical organization. It is likely that such a very liberal amount of space was given to the organ which enables me to make promises, that the organ which should enable me to keep them was crowded out. But I grieve not. I like no half-way things. I had rather have one faculty nobly developed than two faculties of mere ordinary capacity.
    Mark Twain [Samuel Langhorne Clemens] (1835–1910)