Torelli Group
Notice that there is an induced action of the mapping class group on the homology (and cohomology) of the space X. This is because (co)homology is functorial and Homeo0 acts trivially (because all elements are isotopic, hence homotopic to the identity, which acts trivially, and action on (co)homology is invariant under homotopy). The kernel of this action is the Torelli group.
In the case of orientable surfaces, this is the action on first cohomology H1(Σ) ≅ Z2g. Orientation-preserving maps are precisely those that act trivially on top cohomology H2(Σ) ≅ Z. H1(Σ) has a symplectic structure, coming from the cup product; since these maps are automorphisms, and maps preserve the cup product, the mapping class group acts as symplectic automorphisms, and indeed all symplectic automorphisms are realized, yielding the short exact sequence:
One can extend this to
The symplectic group is well-understood. Hence understanding the algebraic structure of the mapping class group often reduces to questions about the Torelli group.
Note that for the torus (genus 1) the map to the symplectic group is an isomorphism, and the Torelli group vanishes.
Read more about this topic: Mapping Class Group
Famous quotes containing the word group:
“No other group in America has so had their identity socialized out of existence as have black women.... When black people are talked about the focus tends to be on black men; and when women are talked about the focus tends to be on white women.”
—bell hooks (b. c. 1955)