Synchronized Transmission
Most modern manual-transmission vehicles are fitted with a synchronized gear box. Transmission gears are always in mesh and rotating, but gears on one shaft can freely rotate or be locked to the shaft. The locking mechanism for a gear consists of a collar (or dog collar) on the shaft which is able to slide sideways so that teeth (or dogs) on its inner surface bridge two circular rings with teeth on their outer circumference: one attached to the gear, one to the shaft. When the rings are bridged by the collar, that particular gear is rotationally locked to the shaft and determines the output speed of the transmission. The gearshift lever manipulates the collars using a set of linkages, so arranged so that one collar may be permitted to lock only one gear at any one time; when "shifting gears", the locking collar from one gear is disengaged before that of another is engaged. One collar often serves for two gears; sliding in one direction selects one transmission speed, in the other direction selects another.
In a synchromesh gearbox, to correctly match the speed of the gear to that of the shaft as the gear is engaged the collar initially applies a force to a cone-shaped brass clutch attached to the gear, which brings the speeds to match prior to the collar locking into place. The collar is prevented from bridging the locking rings when the speeds are mismatched by synchro rings (also called blocker rings or baulk rings, the latter being spelled balk in the U.S.). The synchro ring rotates slightly due to the frictional torque from the cone clutch. In this position, the dog clutch is prevented from engaging. The brass clutch ring gradually causes parts to spin at the same speed. When they do spin the same speed, there is no more torque from the cone clutch and the dog clutch is allowed to fall in to engagement. In a modern gearbox, the action of all of these components is so smooth and fast it is hardly noticed.
The modern cone system was developed by Porsche and introduced in the 1952 Porsche 356; cone synchronisers were called Porsche-type for many years after this. In the early 1950s, only the second-third shift was synchromesh in most cars, requiring only a single synchro and a simple linkage; drivers' manuals in cars suggested that if the driver needed to shift from second to first, it was best to come to a complete stop then shift into first and start up again. With continuing sophistication of mechanical development, fully synchromesh transmissions with three speeds, then four, and then five, became universal by the 1980s. Many modern manual transmission cars, especially sports cars, now offer six speeds. The 2012 Porsche 911 offers a seven-speed manual transmission, with the seventh gear intended for cruising- top speed being attained on sixth.
Reverse gear is usually not synchromesh, as there is only one reverse gear in the normal automotive transmission and changing gears into reverse while moving is not required - and often highly undesirable, particularly at high forward speed. Additionally, the usual method of providing reverse, with an idler gear sliding into place to bridge what would otherwise be two mismatched forward gears, is necessarily similar to the operation of a crash box. Among the cars that have synchromesh in reverse are the 1995-2000 Ford Contour and Mercury Mystique, '00-'05 Chevrolet Cavalier, Mercedes 190 2.3-16, the V6 equipped Alfa Romeo GTV/Spider (916), certain Chrysler, Jeep, and GM products which use the New Venture NV3500 and NV3550 units, the European Ford Sierra and Granada/Scorpio equipped with the MT75 gearbox, the Volvo 850, and almost all Lamborghinis and BMWs.
Read more about this topic: Manual Transmission