Mandatory Access Control - Implementations

Implementations

A few MAC implementations, such as Unisys' Blacker project, were certified robust enough to separate Top Secret from Unclassified late in the last millennium. Their underlying technology became obsolete and they were not refreshed. Today there are no current implementations certified by TCSEC to that level of robust implementation. However, some less robust products exist.

  • Amon Ott's RSBAC (Rule Set Based Access Control) provides a framework for Linux kernels that allows several different security policy / decision modules. One of the models implemented is Mandatory Access Control model. A general goal of RSBAC design was to try to reach (obsolete) Orange Book (TCSEC) B1 level. The model of mandatory access control used in RSBAC is mostly the same as in Unix System V/MLS, Version 1.2.1 (developed in 1989 by the National Computer Security Center of the USA with classification B1/TCSEC). RSBAC requires a set of patches to the stock kernel, which are maintained quite well by the project owner.
  • An NSA research project called SELinux added a Mandatory Access Control architecture to the Linux Kernel, which was merged into the mainline version of Linux in August 2003. It utilizes a Linux 2.6 kernel feature called LSM (Linux Security Modules interface). Red Hat Enterprise Linux version 4 (and later versions) come with an SELinux-enabled kernel. Although SELinux is capable of restricting all processes in the system, the default targeted policy in RHEL confines the most vulnerable programs from the unconfined domain in which all other programs run. RHEL 5 ships 2 other binary policy types: strict, which attempts to implement least privilege, and MLS, which is based on strict and adds MLS labels. RHEL 5 contains additional MLS enhancements and received 2 LSPP/RBACPP/CAPP/EAL4+ certifications in June 2007.
  • TOMOYO Linux is a lightweight MAC implementation for Linux and Embedded Linux, developed by NTT Data Corporation. It has been recently merged in Linux Kernel mainline version 2.6.30 (June 2009). Differently from the label-based approach used by SELinux, TOMOYO Linux performs a pathname-based Mandatory Access Control, separating security domains according to process invocation history, which describes the system behavior. Policy are described in terms of pathnames. A security domain is simply defined by a process call chain, and represented as a string. There are 4 modes: disabled, learning, permissive, enforcing. Administrators can assign different modes for different domains. TOMOYO Linux introduced the "learning" mode, in which the accesses occurred in the kernel are automatically analyzed and stored to generate MAC policy: this mode can be used as first step of policy writing, making it easy to customize later.
  • SUSE Linux (now supported by Novell) and Ubuntu 7.10 have added a MAC implementation called AppArmor. AppArmor utilizes a Linux 2.6 kernel feature called LSM (Linux Security Modules interface). LSM provides a kernel API that allows modules of kernel code to govern access control. AppArmor is not capable of restricting all programs and is merged into the mainline Linux kernel as of version 2.6.36. In most Linux distributions MAC is not installed.
  • grsecurity is a patch for the Linux kernel providing a MAC implementation (precisely, it is a RBAC implementation). Compared to SELinux and AppArmor, grsecurity is not implemented by default in any Linux distribution except for the Tor-ramdisk micro Linux distribution. Hardened Gentoo offers a pre-patched kernel with grsecurity. grsecurity also disables the kernel LSM API. Despite LSM being developed as a security API, LSM provides hooks that could be used by rootkits.
  • Microsoft Starting with Windows Vista and Server 2008 Windows incorporates Mandatory Integrity Control, which adds Integrity Levels (IL) to processes running in a login session. MIC restricts the access permissions of applications that are running under the same user account and which may be less trustworthy. Five integrity levels are defined: Low, Medium, High, System, and Trusted Installer. Processes started by a regular user gain a Medium IL; elevated processes have High IL. While processes inherit the integrity level of the process that spawned it, the integrity level can be customized on a per-process basis: e.g. IE7 and downloaded executables run with Low IL. Windows controls access to objects based on ILs, as well as for defining the boundary for window messages via User Interface Privilege Isolation. Named objects, including files, registry keys or other processes and threads, have an entry in the ACL governing access to them that defines the minimum IL of the process that can use the object. MIC enforces that a process can write to or delete an object only when its IL is equal to or higher than the object’s IL. Furthermore, to prevent access to sensitive data in memory, processes can’t open processes with a higher IL for read access.
  • FreeBSD supports Mandatory Access Control, implemented as part of the TrustedBSD project. It was introduced in FreeBSD 5.0. Since FreeBSD 7.2, MAC support is enabled by default. The framework is extensible; various MAC modules implement policies such as Biba and Multi-Level Security.
  • Sun's Trusted Solaris uses a mandatory and system-enforced access control mechanism (MAC), where clearances and labels are used to enforce a security policy. However note that the capability to manage labels does not imply the kernel strength to operate in Multi-Level Security mode. Access to the labels and control mechanisms are not robustly protected from corruption in protected domain maintained by a kernel. The applications a user runs are combined with the security label at which the user works in the session. Access to information, programs and devices are only weakly controlled.
  • Apple's Mac OS X MAC framework is an implementation of the TrustedBSD MAC framework. A limited high-level sandboxing interface is provided by the command-line function sandbox_init. See the sandbox_init manual page for documentation.
  • Oracle Label Security is an implementation of mandatory access control in the Oracle DBMS.
  • SE-PostgreSQL is a work in progress as of 2008-01-27, providing integration into SE-Linux. It aims for integration into version 8.4, together with row-level restrictions.
  • Trusted RUBIX is a mandatory access control enforcing DBMS that fully integrates with SE-Linux to restrict access to all database objects.

Read more about this topic:  Mandatory Access Control