Description
Modern mainframe design is generally less defined by single-task computational speed (typically defined as MIPS rate or FLOPS in the case of floating point calculations), and more by:
-
- Redundant internal engineering and resulting high reliability and security
- Extensive input-output facilities
- Strict backward compatibility with older software
- High hardware and computational utilization rates to support massive throughput
Their high stability and reliability enables these machines to run uninterrupted for long periods of time.
Software upgrades usually require setting up the operating system or portions thereof, and are non-disruptive only when using virtualizing facilities such as IBM's Z/OS and Parallel Sysplex, or Unisys' XPCL, which support workload sharing so that one system can take over another's application while it is being refreshed. Mainframes are defined by high availability, one of the main reasons for their longevity, since they are typically used in applications where downtime would be costly or catastrophic. The term reliability, availability and serviceability (RAS) is a defining characteristic of mainframe computers. Proper planning and implementation is required to exploit these features, and if improperly implemented, may serve to inhibit the benefits provided. In addition, mainframes are more secure than other computer types. The NIST National Institute of Standards and Technology vulnerabilities database, US-CERT, rates traditional mainframes such as IBM zSeries, Unisys Dorado and Unisys Libra as among the most secure with vulnerabilities in the low single digits as compared with thousands for Windows, Linux and Unix.
As recently as the early 1960s, most mainframes had no explicitly interactive interface. They accepted sets of punched cards, paper tape, or magnetic tape to transfer data and programs. They operated in batch mode to support back office functions, such as customer billing, and supported interactive terminals almost exclusively for applications rather than program development. Typewriter and Teletype devices were also common control consoles for system operators through the 1970s, although ultimately supplanted by keyboard/display devices. By the early 1970s, many mainframes acquired interactive user interfaces and operated as timesharing computers, supporting hundreds of users simultaneously along with batch processing. Users gained access through specialized terminals or, later, from personal computers equipped with terminal emulation software. By the 1980s, many mainframes supported graphical terminals, and terminal emulation, but not graphical user interfaces. This format of end-user computing reached mainstream obsolescence in the 1990s due to the advent of personal computers provided with GUIs. After 2000, most modern mainframes have partially or entirely phased out classic terminal access for end-users in favour of Web-style user interfaces.
Historically, mainframes acquired their name in part because of their substantial size, and because of requirements for specialized heating, ventilation, and air conditioning (HVAC), and electrical power, essentially posing a "main framework" of dedicated infrastructure. The requirements of high-infrastructure design were drastically reduced during the mid-1990s with CMOS mainframe designs replacing the older bipolar technology. IBM claimed that its newer mainframes can reduce data center energy costs for power and cooling, and that they could reduce physical space requirements compared to server farms.
Read more about this topic: Mainframe Computer
Famous quotes containing the word description:
“It [Egypt] has more wonders in it than any other country in the world and provides more works that defy description than any other place.”
—Herodotus (c. 484424 B.C.)
“An intentional object is given by a word or a phrase which gives a description under which.”
—Gertrude Elizabeth Margaret Anscombe (b. 1919)
“Why does philosophy use concepts and why does faith use symbols if both try to express the same ultimate? The answer, of course, is that the relation to the ultimate is not the same in each case. The philosophical relation is in principle a detached description of the basic structure in which the ultimate manifests itself. The relation of faith is in principle an involved expression of concern about the meaning of the ultimate for the faithful.”
—Paul Tillich (18861965)