Magnitude (astronomy) - Background

Background

The magnitude system dates back roughly 2000 years to the Greek astronomer Hipparchus (or the Alexandrian astronomer Ptolemy—references vary) who classified stars by their apparent brightness, which they saw as size (“magnitude means bigness”). To the unaided eye, a more prominent star such as Sirius or Arcturus appears larger than a less prominent star such as Mizar, which in turn appears larger than a truly faint star such as Alcor. The following quote from 1736 gives an excellent description of the ancient naked-eye magnitude system:

The fixed Stars appear to be of different Bignesses, not because they really are so, but because they are not all equally distant from us . Those that are nearest will excel in Lustre and Bigness; the more remote Stars will give a fainter Light, and appear smaller to the Eye. Hence arise the Distribution of Stars, according to their Order and Dignity, into Classes; the first Class containing those which are nearest to us, are called Stars of the first Magnitude; those that are next to them, are Stars of the second Magnitude ... and so forth, 'till we come to the Stars of the sixth Magnitude, which comprehend the smallest Stars that can be discerned with the bare Eye. For all the other Stars, which are only seen by the Help of a Telescope, and which are called Telescopical, are not reckoned among these six Orders. Altho' the Distinction of Stars into six Degrees of Magnitude is commonly received by Astronomers; yet we are not to judge, that every particular Star is exactly to be ranked according to a certain Bigness, which is one of the Six; but rather in reality there are almost as many Orders of Stars, as there are Stars, few of them being exactly of the same Bigness and Lustre. And even among those Stars which are reckoned of the brightest Class, there appears a Variety of Magnitude; for Sirius or Arcturus are each of them brighter than Aldebaran or the Bull's Eye, or even than the Star in Spica; and yet all these Stars are reckoned among the Stars of the first Order: And there are some Stars of such an intermedial Order, that the Astronomers have differed in classing of them; some putting the same Stars in one Class, others in another. For Example: The little Dog was by Tycho placed among the Stars of the second Magnitude, which Ptolemy reckoned among the Stars of the first Class: And therefore it is not truly either of the first or second Order, but ought to be ranked in a Place between both.

Note that the brighter the star, the smaller the magnitude: Bright "first magnitude" stars are "1st-class" stars, while stars barely visible to the naked eye are "sixth magnitude" or "6th-class".

Tycho Brahe attempted to directly measure the “bigness” of the stars in terms of angular size, which in theory meant that a star's magnitude could be determined by more than just the subjective judgment described in the above quote. He concluded that first magnitude stars measured 2 arc minutes (2’) in apparent diameter (1/30 of a degree, or 1/15 the diameter of the full moon), with second through sixth magnitude stars measuring 3/2’, 13/12’, 3/4’, 1/2’, and 1/3’, respectively. The development of the telescope showed that these large sizes were illusory—stars appeared much smaller through the telescope. However, early telescopes produced a spurious disk-like image of a star (known today as an Airy disk) that was larger for brighter stars and smaller for fainter one. Astronomers from Galileo to Jaques Cassini mistook these spurious disks for the physical bodies of stars, and thus into the eighteenth century continued to think of magnitude in terms of the physical size of a star. Johannes Hevelius produced a very precise table of star sizes measured telescopically, but now the measured diameters ranged from just over six seconds of arc for first magnitude down to just under 2 seconds for sixth magnitude. By the time of William Herschel astronomers recognized that the telescopic disks of stars were spurious and a function of the telescope as well as the brightness of the stars, but still spoke in terms of a star's size more than its brightness. Even well into the nineteenth century the magnitude system continued to be described in terms of six classes determined by apparent size, in which

There is no other rule for classing the stars but the estimation of the observer; and hence it is that some astronomers reckon those stars of the first magnitude which others esteem to be of the second.

However, by the mid-nineteenth century astronomers had measured the distances to stars via stellar parallax, and so understood that stars are so far away as to essentially appear as point sources of light. Following advances in understanding the diffraction of light and Astronomical seeing, astronomers fully understood both that the apparent sizes of stars were spurious and how those sizes depended on the intensity of light coming from a star (this is the star's apparent brightness, which can be measured in units such as Watts/cm2) so that brighter stars appeared larger. Photometric measurements (made, for example, by using a light to project an artificial “star” into a telescope’s field of view and adjusting it to match real stars in brightness) had shown that that first magnitude stars are about 100 times brighter than sixth-magnitude stars. Thus in 1856 Norman R. Pogson of Oxford proposed that a standard ratio of 2.512 be adopted between magnitudes, so five magnitude steps corresponded precisely to a factor of 100 in brightness. This is the modern magnitude system, which measures the brightness, not the apparent size, of stars. Using this logarithmic scale, it is possible for a star to be brighter than “first class”, so Arcturus is magnitude 0, and Sirius is magnitude −1.46.

Read more about this topic:  Magnitude (astronomy)

Famous quotes containing the word background:

    Silence is the universal refuge, the sequel to all dull discourses and all foolish acts, a balm to our every chagrin, as welcome after satiety as after disappointment; that background which the painter may not daub, be he master or bungler, and which, however awkward a figure we may have made in the foreground, remains ever our inviolable asylum, where no indignity can assail, no personality can disturb us.
    Henry David Thoreau (1817–1862)

    Pilate with his question “What is truth?” is gladly trotted out these days as an advocate of Christ, so as to arouse the suspicion that everything known and knowable is an illusion and to erect the cross upon that gruesome background of the impossibility of knowledge.
    Friedrich Nietzsche (1844–1900)

    ... every experience in life enriches one’s background and should teach valuable lessons.
    Mary Barnett Gilson (1877–?)