Working Materials
The magnetocaloric effect is an intrinsic property of a magnetic solid. This thermal response of a solid to the application or removal of magnetic fields is maximized when the solid is near its magnetic ordering temperature.
The magnitudes of the magnetic entropy and the adiabatic temperature changes are strongly dependent upon the magnetic order process: the magnitude is generally small in antiferromagnets, ferrimagnets and spin glass systems; it can be substantial for normal ferromagnets which undergo a second order magnetic transition; and it is generally the largest for a ferromagnet which undergoes a first order magnetic transition.
Also, crystalline electric fields and pressure can have a substantial influence on magnetic entropy and adiabatic temperature changes.
Currently, alloys of gadolinium producing 3 - 4 K per tesla of change in a magnetic field can be used for magnetic refrigeration.
Recent research on materials that exhibit a giant entropy change showed that Gd5(SixGe1−x)4, La(FexSi1−x)13Hx and MnFeP1−xAsx alloys, for example, are some of the most promising substitutes for gadolinium and its alloys — GdDy, GdTb, etc. These materials are called giant magnetocaloric effect (GMCE) materials.
Gadolinium and its alloys are the best material available today for magnetic refrigeration near room temperature since they undergo second-order phase transitions which have no magnetic or thermal hysteresis involved.
Read more about this topic: Magnetic Refrigeration
Famous quotes containing the words working and/or materials:
“Thats what being in the working class is all abouthow to get out of it.”
—Neville Kenneth Wran (b. 1926)
“What is most interesting and valuable in it, however, is not the materials for the history of Pontiac, or Braddock, or the Northwest, which it furnishes; not the annals of the country, but the natural facts, or perennials, which are ever without date. When out of history the truth shall be extracted, it will have shed its dates like withered leaves.”
—Henry David Thoreau (18171862)