Description
Each point on a surface is associated with a direction, called the surface normal; the magnetic flux through a point is then the component of the magnetic field along this direction.The magnetic interaction is described in terms of a vector field, where each point in space (and time) is associated with a vector that determines what force a moving charge would experience at that point (see Lorentz force). Since a vector field is quite difficult to visualize at first, in elementary physics one may instead visualize this field with field lines. The magnetic flux through some surface, in this simplified picture, is proportional to the number of field lines passing through that surface (in some contexts, the flux may be defined to be precisely the number of field lines passing through that surface; although technically misleading, this distinction is not important). Note that the magnetic flux is the net number of field lines passing through that surface; that is, the number passing through in one direction minus the number passing through in the other direction (see below for deciding in which direction the field lines carry a positive sign and in which they carry a negative sign). In more advanced physics, the field line analogy is dropped and the magnetic flux is properly defined as the component of the magnetic field passing through a surface. If the magnetic field is constant, the magnetic flux passing through a surface of vector area S is
where B is the magnitude of the magnetic field (the magnetic flux density) having the unit of Wb/m2 (Tesla), S is the area of the surface, and θ is the angle between the magnetic field lines and the normal (perpendicular) to S. For a varying magnetic field, we first consider the magnetic flux through an infinitesimal area element dS, where we may consider the field to be constant:
A generic surface, S, can then be broken into infinitesimal elements and the total magnetic flux through the surface is then the surface integral
From the definition of the magnetic vector potential A and the fundamental theorem of the curl the magnetic flux may also be defined as:
where the line integral is taken over the boundary of the surface S, which is denoted ∂S.
Read more about this topic: Magnetic Flux
Famous quotes containing the word description:
“The type of fig leaf which each culture employs to cover its social taboos offers a twofold description of its morality. It reveals that certain unacknowledged behavior exists and it suggests the form that such behavior takes.”
—Freda Adler (b. 1934)
“I fancy it must be the quantity of animal food eaten by the English which renders their character insusceptible of civilisation. I suspect it is in their kitchens and not in their churches that their reformation must be worked, and that Missionaries of that description from [France] would avail more than those who should endeavor to tame them by precepts of religion or philosophy.”
—Thomas Jefferson (17431826)
“The next Augustan age will dawn on the other side of the Atlantic. There will, perhaps, be a Thucydides at Boston, a Xenophon at New York, and, in time, a Virgil at Mexico, and a Newton at Peru. At last, some curious traveller from Lima will visit England and give a description of the ruins of St Pauls, like the editions of Balbec and Palmyra.”
—Horace Walpole (17171797)