History
Although magnets and magnetism were known much earlier, the study of the magnetic field began in 1269 when French scholar Petrus Peregrinus de Maricourt mapped out the magnetic field on the surface of a spherical magnet using iron needles. Noting that the resulting field lines crossed at two points he named those points 'poles' in analogy to Earth's poles. Almost three centuries later, William Gilbert of Colchester replicated Petrus Peregrinus' work and was the first to state explicitly that Earth is a magnet. Published in 1600, Gilbert's work, De Magnete, helped to establish magnetism as a science.
In 1750, John Michell stated that magnetic poles attract and repel in accordance with an inverse square law. Charles-Augustin de Coulomb experimentally verified this in 1785 and stated explicitly that the North and South poles cannot be separated. Building on this force between poles, Siméon-Denis Poisson (1781–1840) created the first successful model of the magnetic field which he presented in 1824. In this model, a magnetic H-field is produced by 'magnetic poles' and magnetism is due to small pairs of north/south magnetic poles.
Three discoveries challenged this foundation of magnetism, though. First, in 1819, Hans Christian Oersted discovered that an electric current generates a magnetic field encircling it. Then in 1820, André-Marie Ampère showed that parallel wires having currents in the same direction attract one another. Finally, Jean-Baptiste Biot and Félix Savart discovered the Biot–Savart law in 1820 which correctly predicts the magnetic field around any current-carrying wire.
Extending these experiments, Ampère published his own successful model of magnetism in 1825. In it, he showed the equivalence of electrical currents to magnets and proposed that magnetism is due to perpetually flowing loops of current instead of the dipoles of magnetic charge in Poisson's model. This has the additional benefit of explaining why magnetic charge can not be isolated. Further, Ampère derived both Ampère's force law describing the force between two currents and Ampère's law which, like the Biot–Savart law, correctly described the magnetic field generated by a steady current. Also in this work, Ampère introduced the term electrodynamics to describe the relationship between electricity and magnetism.
In 1831, Michael Faraday discovered electromagnetic induction when he found that a changing magnetic field generates an encircling electric field. He described this phenomenon in what is known as Faraday's law of induction. Later, Franz Ernst Neumann proved that, for a moving conductor in a magnetic field, induction is a consequence of Ampère's force law . In the process he introduced the magnetic vector potential which was later shown to be equivalent to the underlying mechanism proposed by Faraday.
In 1850, Lord Kelvin, then known as William Thomson, distinguished between two magnetic fields now denoted H and B. The former applied to Poisson's model and the latter to Ampère's model and induction. Further, he derived how H and B relate to each other.
Between 1861 and 1865, James Clerk Maxwell developed and published Maxwell's equations which explained and united all of classical electricity and magnetism. The first set of these equations was published in a paper entitled On Physical Lines of Force in 1861. These equations were valid although incomplete. He completed Maxwell's set of equations in his later 1865 paper A Dynamical Theory of the Electromagnetic Field and demonstrated the fact that light is an electromagnetic wave. Heinrich Hertz experimentally confirmed this fact in 1887.
Although implicit in Ampère's force law the force due to a magnetic field on a moving electric charge was not correctly and explicitly stated until 1892 by Hendrik Lorentz who theoretically derived it from Maxwell's equations. With this last piece of the puzzle, the classical theory of electrodynamics was essentially complete.
The twentieth century extended electrodynamics to include relativity and quantum mechanics. Albert Einstein, in his paper of 1905 that established relativity, showed that both the electric and magnetic fields are part of the same phenomena viewed from different reference frames. (See moving magnet and conductor problem for details about the thought experiment that eventually helped Albert Einstein to develop special relativity.) Finally, the emergent field of quantum mechanics was merged with electrodynamics to form quantum electrodynamics (QED).
Read more about this topic: Magnetic Field
Famous quotes containing the word history:
“When the coherence of the parts of a stone, or even that composition of parts which renders it extended; when these familiar objects, I say, are so inexplicable, and contain circumstances so repugnant and contradictory; with what assurance can we decide concerning the origin of worlds, or trace their history from eternity to eternity?”
—David Hume (17111776)
“In the history of the human mind, these glowing and ruddy fables precede the noonday thoughts of men, as Aurora the suns rays. The matutine intellect of the poet, keeping in advance of the glare of philosophy, always dwells in this auroral atmosphere.”
—Henry David Thoreau (18171862)
“The disadvantage of men not knowing the past is that they do not know the present. History is a hill or high point of vantage, from which alone men see the town in which they live or the age in which they are living.”
—Gilbert Keith Chesterton (18741936)