Internal Magnetic Field of A Dipole
See also: Magnetic moment#Magnetic pole definitionThe two models for a dipole (current loop and magnetic poles) give the same predictions for the magnetic field far from the source. However, inside the source region they give different predictions. The magnetic field between poles is in the opposite direction to the magnetic moment (which points from the negative charge to the positive charge), while inside a current loop it is in the same direction (see the figure to the right). Clearly, the limits of these fields must also be different as the sources shrink to zero size. This distinction only matters if the dipole limit is used to calculate fields inside a magnetic material.
If a magnetic dipole is formed by making a current loop smaller and smaller, but keeping the product of current and area constant, the limiting field is
- .
where n=x/|x| is a unit vector, and δ(x) is the Dirac delta function in three dimensions. Unlike the expressions in the previous section, this limit is correct for the internal field of the dipole.
If a magnetic dipole is formed by taking a "north pole" and a "south pole", bringing them closer and closer together but keeping the product of magnetic pole-charge and distance constant, the limiting field is
These fields are related by B = μ0(H+M), where
is the magnetization.
Read more about this topic: Magnetic Dipole
Famous quotes containing the words internal, magnetic and/or field:
“What makes some internal feature of a thing a representation could only its role in regulating the behavior of an intentional system.”
—Daniel Clement Dennett (b. 1942)
“We are in great haste to construct a magnetic telegraph from Maine to Texas; but Maine and Texas, it may be, have nothing important to communicate.”
—Henry David Thoreau (18171862)
“Love to chawnk green apples an go swimmin in the
lake.
Hate to take the castor-ile they give for belly-ache!
Most all the time, the whole year round, there aint no flies on
me,
But jest fore Christmas Im as good as I kin be!”
—Eugene Field (18501895)