Example On C Terms
In the visible and near-ultraviolet regions, the hexacyanoferrate(III) ion (Fe(CN)63−) exhibits three strong absorptions at 24500, 32700, and 40500 cm−1, which have been ascribed to ligand to metal charge transfer (LMCT) transitions. They all have lower energy than the lowest-energy intense band for the Fe(II) complex Fe(CN)62- found at 46000 cm−1. The red shift with increasing oxidation state of the metal is characteristic of LMCT bands.
These features can be explained as follows. The ground state of the anion is 2T2g, which derives from the electronic configuration (t2g)5. So, there would be an unpaired electron in the d orbital of Fe3+ From that, the three bands can be assigned to the transitions 2t2g→2t1u1, 2t2g →2t1u2, 2t2g →2t2u. Two of the excited states are of the same symmetry, and, based on the group theory, they could mix with each other so that there are no pure σ and π characters in the two t1u states, but for t2u, there would be no intermixing. The A terms are also possible from the degenerate excited states, but the studies of temperature dependence showed that the A terms are not as dependent as the C term.
An MCD study of Fe(CN)63- embedded in a thin polyvinyl alcohol (PVA) film revealed a temperature dependence of the C term. The room-temperature C0/D0 values for the three bands in the Fe(CN)63- spectrum are 1.2, −0.6, and 0.6, respectively, and their signs (positive, negative, and positive) establish the energy ordering as 2t2g→2t1u2<2t2g→2t2u<2t2g→2t1u1
Read more about this topic: Magnetic Circular Dichroism
Famous quotes containing the word terms:
“Certainly for us of the modern world, with its conflicting claims, its entangled interests, distracted by so many sorrows, so many preoccupations, so bewildering an experience, the problem of unity with ourselves in blitheness and repose, is far harder than it was for the Greek within the simple terms of antique life. Yet, not less than ever, the intellect demands completeness, centrality.”
—Walter Pater (18391894)