Differences Between CD and MCD
In natural optical activity, the difference between the LCP light and the RCP light is caused by the asymmetry of the molecules. Because of the handedness of the molecule, the absorption of the LCP light would be different from the RCP light. However, in MCD in the presence of a magnetic field, LCP and RCP no longer interact equivalently with the absorbing medium. Thus there is not the same direct relation between magnetic optical activity and molecular stereochemistry which would be expected, because it is found in natural optical activity. So, natural CD is much more rare than MCD.
Although there is much overlap in the requirements and use of instruments, ordinary CD instruments are usually optimized for operation in the ultraviolet, approximately 170–300 nm, while MCD instruments are typically required to operate in the visible to near infrared, approximately 300–2000 nm. The physical processes that lead to MCD are substantively different from those of CD. However, like CD, it is dependent on the differential absorption of left and right hand circularly polarized light. MCD will only exist at a given wavelength if the studied sample has an optical absorption at that wavelength. This is distinctly different from the related phenomenon of optical rotatory dispersion (ORD), which can be observed at wavelengths far from any absorption band.
Read more about this topic: Magnetic Circular Dichroism
Famous quotes containing the word differences:
“Generally there is no consistent evidence of significant differences in school achievement between children of working and nonworking mothers, but differences that do appear are often related to maternal satisfaction with her chosen role, and the quality of substitute care.”
—Ruth E. Zambrana, U.S. researcher, M. Hurst, and R.L. Hite. The Working Mother in Contemporary Perspectives: A Review of Literature, Pediatrics (December 1979)