Classification By Properties
Group-like structures | |||||
Totality* | Associativity | Identity | Inverses | Commutativity | |
---|---|---|---|---|---|
Magma | Yes | No | No | No | No |
Semigroup | Yes | Yes | No | No | No |
Monoid | Yes | Yes | Yes | No | No |
Group | Yes | Yes | Yes | Yes | No |
Abelian Group | Yes | Yes | Yes | Yes | Yes |
Loop | Yes | No | Yes | Yes | No |
Quasigroup | Yes | No | No | Yes | No |
Groupoid | No | Yes | Yes | Yes | No |
Category | No | Yes | Yes | No | No |
Semicategory | No | Yes | No | No | No |
A magma (S, *) is called
- unital if it has an identity element,
- medial if it satisfies the identity xy * uz = xu * yz (i.e. (x * y) * (u * z) = (x * u) * (y * z) for all x, y, u, z in S),
- left semimedial if it satisfies the identity xx * yz = xy * xz,
- right semimedial if it satisfies the identity yz * xx = yx * zx,
- semimedial if it is both left and right semimedial,
- left distributive if it satisfies the identity x * yz = xy * xz,
- right distributive if it satisfies the identity yz * x = yx * zx,
- autodistributive if it is both left and right distributive,
- commutative if it satisfies the identity xy = yx,
- idempotent if it satisfies the identity xx = x,
- unipotent if it satisfies the identity xx = yy,
- zeropotent if it satisfies the identity xx * y = yy * x = xx,
- alternative if it satisfies the identities xx * y = x * xy and x * yy = xy * y,
- power-associative if the submagma generated by any element is associative,
- left-cancellative if for all x, y, and z, xy = xz implies y = z
- right-cancellative if for all x, y, and z, yx = zx implies y = z
- cancellative if it is both right-cancellative and left-cancellative
- a semigroup if it satisfies the identity x * yz = xy * z (associativity),
- a semigroup with left zeros if there are elements x for which the identity x = xy holds,
- a semigroup with right zeros if there are elements x for which the identity x = yx holds,
- a semigroup with zero multiplication or a null semigroup if it satisfies the identity xy = uv, for all x,y,u and v
- a left unar if it satisfies the identity xy = xz,
- a right unar if it satisfies the identity yx = zx,
- trimedial if any triple of its (not necessarily distinct) elements generates a medial submagma,
- entropic if it is a homomorphic image of a medial cancellation magma.
If is instead a partial operation, then S is called a partial magma.
Read more about this topic: Magma (algebra)
Famous quotes containing the word properties:
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)