Types and Construction
There are many ways to construct magic squares, but the standard (and most simple) way is to follow certain configurations/formulas which generate regular patterns. Magic squares exist for all values of n, with only one exception: it is impossible to construct a magic square of order 2. Magic squares can be classified into three types: odd, doubly even (n divisible by four) and singly even (n even, but not divisible by four). Odd and doubly even magic squares are easy to generate; the construction of singly even magic squares is more difficult but several methods exist, including the LUX method for magic squares (due to John Horton Conway) and the Strachey method for magic squares.
Group theory was also used for constructing new magic squares of a given order from one of them, please see.
How many n×n magic squares for n>5? |
The number of different n×n magic squares for n from 1 to 5, not counting rotations and reflections:
- 1, 0, 1, 880, 275305224 (sequence A006052 in OEIS).
The number for n = 6 has been estimated to 1.7745×1019.
Read more about this topic: Magic Square
Famous quotes containing the words types and, types and/or construction:
“The bourgeoisie loves so-called positive types and novels with happy endings since they lull one into thinking that it is fine to simultaneously acquire capital and maintain ones innocence, to be a beast and still be happy.”
—Anton Pavlovich Chekhov (18601904)
“Hes one of those know-it-all types that, if you flatter the wig off him, he chatter like a goony bird at mating time.”
—Michael Blankfort. Lewis Milestone. Johnson (Reginald Gardner)
“Striving toward a goal puts a more pleasing construction on our advance toward death.”
—Mason Cooley (b. 1927)