Lyotropic Liquid Crystal - Liquid Crystalline Phases and Composition/Temperature

Liquid Crystalline Phases and Composition/Temperature

The simplest liquid crystalline phase that is formed by spherical micelles is the 'micellar cubic', denoted by the symbol I1. This is a highly viscous, optically isotropic phase in which the micelles are arranges on a cubic lattice. At higher amphiphile concentrations the micelles fuse to form cylindrical aggregates of indefinite length, and these cylinders are arranged on a long-ranged hexagonal lattice. This lyotropic liquid crystalline phase is known as the 'hexagonal phase', or more specifically the 'normal topology' hexagonal phase and is generally denoted by the symbol HI. At higher concentrations of amphiphile the 'lamellar phase' is formed. This phase is denoted by the symbol Lα. This phase consists of amphiphilic molecules arranged in bilayer sheers separated by layers of water. Each bilayer is a prototype of the arrangement of lipids in cell membranes. For most amphiphiles that consist of a single hydrocarbon chain, one or more phases having complex architectures are formed at concentrations that are intermediate between those required to form a hexagonal phase and those that lead to the formation of a lamellar phase. Often this intermediate phase is a bicontinuous cubic phase.

Schematic showing the aggregation of amphiphiles into micelles and then into lyotropic liquid crystalline phases as a function of amphiphile concentration and of temperature.

In principle, increasing the amphiphile concentration beyond the point where lamellar phases are formed would lead to the formation of the inverse topology lyotropic phases, namely the inverse cubic phases, the inverse hexagonal phase (HII) and the inverse micellar cubic phase. In practice inverse topology phases are more readily formed by amphiphiles that have at least two hyrocarbon chains attached to a headgroup. The most abundant phospholipids that are found in cell membranes of mammalian cells are examples of amphiphiles that readily form inverse topology lyotropic phases.

Read more about this topic:  Lyotropic Liquid Crystal

Famous quotes containing the words liquid, crystalline, phases, composition and/or temperature:

    Taking a good mouthful, I felt as though I had taken liquid fire; the tomato was chile colorado, or red pepper, of the purest kind. It nearly killed me, and I saw Gómez’ eyes twinkle for he saw that his share of supper was increased.
    —For the State of California, U.S. public relief program (1935-1943)

    The air was so elastic and crystalline that it had the same effect on the landscape that a glass has on a picture, to give it an ideal remoteness and perfection.
    Henry David Thoreau (1817–1862)

    But parents can be understanding and accept the more difficult stages as necessary times of growth for the child. Parents can appreciate the fact that these phases are not easy for the child to live through either; rapid growth times are hard on a child. Perhaps it’s a small comfort to know that the harder-to-live-with stages do alternate with the calmer times,so parents can count on getting periodic breaks.
    Saf Lerman (20th century)

    The composition of a tragedy requires testicles.
    Voltaire [François Marie Arouet] (1694–1778)

    This pond never breaks up so soon as the others in this neighborhood, on account both of its greater depth and its having no stream passing through it to melt or wear away the ice.... It indicates better than any water hereabouts the absolute progress of the season, being least affected by transient changes of temperature. A severe cold of a few days’ duration in March may very much retard the opening of the former ponds, while the temperature of Walden increases almost uninterruptedly.
    Henry David Thoreau (1817–1862)