Significance of The Lyapunov Spectrum
The Lyapunov spectrum can be used to give an estimate of the rate of entropy production and of the fractal dimension of the considered dynamical system. In particular from the knowledge of the Lyapunov spectrum it is possible to obtain the so-called Kaplan–Yorke dimension, that is defined as follows:
where is the maximum integer such that the sum of the largest exponents is still non-negative. represents an upper bound for the information dimension of the system. Moreover, the sum of all the positive Lyapunov exponents gives an estimate of the Kolmogorov–Sinai entropy accordingly to Pesin's theorem.
The multiplicative inverse of the largest Lyapunov exponent is sometimes referred in literature as Lyapunov time, and defines the characteristic e-folding time. For chaotic orbits, the Lyapunov time will be finite, whereas for regular orbits it will be infinite.
Read more about this topic: Lyapunov Exponent
Famous quotes containing the words significance of and/or significance:
“It is necessary not to be Christian to appreciate the beauty and significance of the life of Christ.”
—Henry David Thoreau (18171862)
“The hypothesis I wish to advance is that ... the language of morality is in ... grave disorder.... What we possess, if this is true, are the fragments of a conceptual scheme, parts of which now lack those contexts from which their significance derived. We possess indeed simulacra of morality, we continue to use many of the key expressions. But we havevery largely if not entirelylost our comprehension, both theoretical and practical, of morality.”
—Alasdair Chalmers MacIntyre (b. 1929)