Lunar Space Elevator - Location

Location

There are two lunar-synchronous points where an elevator could be placed that would be stable: the Lagrange points L1 and L2. L1 on the Earth side of the Moon is 56,000 km up from the surface, and L2 on the far side is 67,000 km up. In these positions, the forces of gravity and centrifugal force are equal, and as long as the system remained balanced (L1 and L2 are in unstable equilibrium along the line between Earth and Moon), it would remain stationary.

Both of these positions are substantially farther up than the 36,000 km from Earth to geostationary orbit. Furthermore, the weight of the limb of the cable system extending down to the Moon would have to be balanced by the cable extending further up, and the Moon's slow rotation means the upper limb would have to be much longer than for an Earth-based system. To suspend a kilogram of cable or payload just above the surface of the Moon would require 1,000 kg of counterweight, 26,000 km beyond L1. (A smaller counterweight on a longer cable, e.g., 100 kg at a distance of 230,000 km — more than halfway to Earth — would have the same balancing effect.) Without the Earth's gravity to attract it, an L2 cable's lowest kilogram would require 1,000 kg of counterweight at a distance of 120,000 km from the Moon.

The anchor point of a space elevator is normally considered to be at the equator. However, there are several possible cases to be made for locating a lunar base at one of the Moon's poles; a base on a peak of eternal light could take advantage of continuous solar power, for example, or small quantities of water and other volatiles may be trapped in permanently shaded crater bottoms. A space elevator could be anchored near a lunar pole, though not directly at it. A tramway could be used to bring the cable the rest of the way to the pole, with the Moon's low gravity allowing much taller support towers and wider spans between them than would be possible on Earth.

Read more about this topic:  Lunar Space Elevator