Louis de Branges de Bourcia (born August 21, 1932) is a French-American mathematician. He is the Edward C. Elliott Distinguished Professor of Mathematics at Purdue University in West Lafayette, Indiana. He is best known for proving the long-standing Bieberbach conjecture in 1984, now called de Branges's theorem. He claims to have proved several important conjectures in mathematics, including the generalized Riemann hypothesis (GRH).
Born to American parents who lived in Paris, de Branges moved to the U.S. in 1941 with his mother and sisters. His native language is French. He did his undergraduate studies at the Massachusetts Institute of Technology (1949–53), and received a Ph.D. in mathematics from Cornell University (1953–7). His advisors were Harry Pollard and Wolfgang Fuchs. He spent two years (1959–60) at the Institute for Advanced Study and another two (1961–2) at the Courant Institute of Mathematical Sciences. He was appointed to Purdue in 1962.
An analyst, de Branges has made incursions into real, functional, complex, harmonic (Fourier) and Diophantine analyses. As far as particular techniques and approaches are concerned, he is an expert in spectral and operator theories.
Read more about Louis De Branges De Bourcia: Work, Awards and Honors
Famous quotes containing the word louis:
“The only thing that one really knows about human nature is that it changes. Change is the one quality we can predicate of it. The systems that fail are those that rely on the permanency of human nature, and not on its growth and development. The error of Louis XIV was that he thought human nature would always be the same. The result of his error was the French Revolution. It was an admirable result.”
—Oscar Wilde (18541900)