Lossless Compression - Limitations

Limitations

Lossless data compression algorithms cannot guarantee compression for all input data sets. In other words, for any (lossless) data compression algorithm, there will be an input data set that does not get smaller when processed by the algorithm. This is easily proven with elementary mathematics using a counting argument, as follows:

  • Assume that each file is represented as a string of bits of some arbitrary length.
  • Suppose that there is a compression algorithm that transforms every file into a distinct file that is no longer than the original file, and that at least one file will be compressed into something that is shorter than itself.
  • Let be the least number such that there is a file with length bits that compresses to something shorter. Let be the length (in bits) of the compressed version of .
  • Because, every file of length keeps its size during compression. There are such files. Together with, this makes files that all compress into one of the files of length .
  • But is smaller than, so by the pigeonhole principle there must be some file of length that is simultaneously the output of the compression function on two different inputs. That file cannot be decompressed reliably (which of the two originals should that yield?), which contradicts the assumption that the algorithm was lossless.
  • We must therefore conclude that our original hypothesis (that the compression function makes no file longer) is necessarily untrue.

Any lossless compression algorithm that makes some files shorter must necessarily make some files longer, but it is not necessary that those files become very much longer. Most practical compression algorithms provide an "escape" facility that can turn off the normal coding for files that would become longer by being encoded. In theory, only a single additional bit is required to tell the decoder that the normal coding has been turned off for the entire input; however, most encoding algorithms use at least one full byte (and typically more than one) for this purpose. For example, DEFLATE compressed files never need to grow by more than 5 bytes per 65,535 bytes of input.

In fact, if we consider files of length N, if all files were equally probable, then for any lossless compression that reduces the size of some file, the expected length of a compressed file (averaged over all possible files of length N) must necessarily be greater than N. So if we know nothing about the properties of the data we are compressing, we might as well not compress it at all. A lossless compression algorithm is useful only when we are more likely to compress certain types of files than others; then the algorithm could be designed to compress those types of data better.

Thus, the main lesson from the argument is not that one risks big losses, but merely that one cannot always win. To choose an algorithm always means implicitly to select a subset of all files that will become usefully shorter. This is the theoretical reason why we need to have different compression algorithms for different kinds of files: there cannot be any algorithm that is good for all kinds of data.

The "trick" that allows lossless compression algorithms, used on the type of data they were designed for, to consistently compress such files to a shorter form is that the files the algorithms are designed to act on all have some form of easily modeled redundancy that the algorithm is designed to remove, and thus belong to the subset of files that that algorithm can make shorter, whereas other files would not get compressed or even get bigger. Algorithms are generally quite specifically tuned to a particular type of file: for example, lossless audio compression programs do not work well on text files, and vice versa.

In particular, files of random data cannot be consistently compressed by any conceivable lossless data compression algorithm: indeed, this result is used to define the concept of randomness in algorithmic complexity theory.

It's provably impossible to create an algorithm that can losslessly compress any data. While there have been many claims through the years of companies achieving "perfect compression" where an arbitrary number N of random bits can always be compressed to N − 1 bits, these kinds of claims can be safely discarded without even looking at any further details regarding the purported compression scheme. Such an algorithm contradicts fundamental laws of mathematics because, if it existed, it could be applied repeatedly to losslessly reduce any file to length 0. Allegedly "perfect" compression algorithms are usually called derisively "magic" compression algorithms.

On the other hand, it has also been proven that there is no algorithm to determine whether a file is incompressible in the sense of Kolmogorov complexity. Hence it's possible that any particular file, even if it appears random, may be significantly compressed, even including the size of the decompressor. An example is the digits of the mathematical constant pi, which appear random but can be generated by a very small program. However, even though it cannot be determined whether a particular file is incompressible, a simple theorem about incompressible strings shows that over 99% of files of any given length cannot be compressed by more than one byte (including the size of the decompressor).

Read more about this topic:  Lossless Compression

Famous quotes containing the word limitations:

    The only rules comedy can tolerate are those of taste, and the only limitations those of libel.
    James Thurber (1894–1961)

    The motion picture made in Hollywood, if it is to create art at all, must do so within such strangling limitations of subject and treatment that it is a blind wonder it ever achieves any distinction beyond the purely mechanical slickness of a glass and chromium bathroom.
    Raymond Chandler (1888–1959)

    That all may be so, but when I begin to exercise that power I am not conscious of the power, but only of the limitations imposed on me.
    William Howard Taft (1857–1930)