Loss Function - Loss Functions in Bayesian Statistics

Loss Functions in Bayesian Statistics

One of the consequences of Bayesian inference is that in addition to experimental data, the loss function does not in itself wholly determine a decision. What is important is the relationship between the loss function and the prior probability. So it is possible to have two different loss functions which lead to the same decision when the prior probability distributions associated with each compensate for the details of each loss function.

Combining the three elements of the prior probability, the data, and the loss function then allows decisions to be based on maximizing the subjective expected utility, a concept introduced by Leonard J. Savage.

Read more about this topic:  Loss Function

Famous quotes containing the words loss, functions and/or statistics:

    One who shows signs of mental aberration is, inevitably, perhaps, but cruelly, shut off from familiar, thoughtless intercourse, partly excommunicated; his isolation is unwittingly proclaimed to him on every countenance by curiosity, indifference, aversion, or pity, and in so far as he is human enough to need free and equal communication and feel the lack of it, he suffers pain and loss of a kind and degree which others can only faintly imagine, and for the most part ignore.
    Charles Horton Cooley (1864–1929)

    The English masses are lovable: they are kind, decent, tolerant, practical and not stupid. The tragedy is that there are too many of them, and that they are aimless, having outgrown the servile functions for which they were encouraged to multiply. One day these huge crowds will have to seize power because there will be nothing else for them to do, and yet they neither demand power nor are ready to make use of it; they will learn only to be bored in a new way.
    Cyril Connolly (1903–1974)

    We already have the statistics for the future: the growth percentages of pollution, overpopulation, desertification. The future is already in place.
    Günther Grass (b. 1927)