Relativistic Form of The Lorentz Force
Because the electric and magnetic fields are dependent on the velocity of an observer, the relativistic form of the Lorentz force law can best be exhibited starting from a coordinate-independent expression for the electromagnetic and magnetic fields, and an arbitrary time-direction, where
and
is a space-time plane (bivector), which has six degrees of freedom corresponding to boosts (rotations in space-time planes) and rotations (rotations in space-space planes). The dot product with the vector pulls a vector from the translational part, while the wedge-product creates a space-time trivector, whose dot product with the volume element (the dual above) creates the magnetic field vector from the spatial rotation part. Only the parts of the above two formulas perpendicular to gamma are relevant. The relativistic velocity is given by the (time-like) changes in a time-position vector, where
(which shows our choice for the metric) and the velocity is
Then the Lorentz force law is simply (note that the order is important)
Read more about this topic: Lorentz Force
Famous quotes containing the words form and/or force:
“Mine eye hath playd the painter, and hath steeld
Thy beautys form in table of my heart:”
—William Shakespeare (15641616)
“The force of truth that a statement imparts, then, its prominence among the hordes of recorded observations that I may optionally apply to my own life, depends, in addition to the sense that it is argumentatively defensible, on the sense that someone like me, and someone I like, whose voice is audible and who is at least notionally in the same room with me, does or can possibly hold it to be compellingly true.”
—Nicholson Baker (b. 1957)