Loop Quantum Gravity - History

History

In 1986, Abhay Ashtekar reformulated Einstein's general relativity in a language closer to that of the rest of fundamental physics. Shortly after, Ted Jacobson and Lee Smolin realized that the formal equation of quantum gravity, called the Wheeler-DeWitt equation, admitted solutions labelled by loops, when rewritten in the new Ashtekar language, and Carlo Rovelli and Lee Smolin defined a nonperturbative and background-independent quantum theory of gravity in terms of these loop solutions. Jorge Pullin and Jurek Lewandowski understood that the intersections of the loops are essential for the consistency of the theory, and the theory should be formulated in terms of intersecting loops, or graphs.

In 1994, Rovelli and Smolin showed that the quantum operators of the theory associated to area and volume have a discrete spectrum. That is geometry is quantized. This result defines an explicit basis of states of quantum geometry, which turned out to be labelled by Roger Penrose's spin networks, which are graphs labelled by spins.

The canonical version of the dynamics was put on firm ground by Thomas Thiemann who defined an anomaly-free Hamiltonian operator, showing the existence of a mathematically consistent background-independent theory. The covariant or spinfoam version of the dynamics developed during several decades, and crystallized in 2008, from the joint work of research groups in France, Canada, UK, Poland, and Germany, leading to the definition of a family of transition amplitudes, which in the classical limit can be shown to be related to a family of truncations of general relativity. The finiteness of these amplitudes was proven in 2011. It requires the existence of a positive cosmological constant, and this is consistent with observed acceleration in the expansion of the Universe.

Read more about this topic:  Loop Quantum Gravity

Famous quotes containing the word history:

    The myth of independence from the mother is abandoned in mid- life as women learn new routes around the mother—both the mother without and the mother within. A mid-life daughter may reengage with a mother or put new controls on care and set limits to love. But whatever she does, her child’s history is never finished.
    Terri Apter (20th century)

    Perhaps universal history is the history of the diverse intonation of some metaphors.
    Jorge Luis Borges (1899–1986)

    If you look at history you’ll find that no state has been so plagued by its rulers as when power has fallen into the hands of some dabbler in philosophy or literary addict.
    Desiderius Erasmus (c. 1466–1536)