Solution For Two Sequences
The LCS problem has an optimal substructure: the problem can be broken down into smaller, simple "subproblems", which can be broken down into yet simpler subproblems, and so on, until, finally, the solution becomes trivial. The LCS problem also has overlapping subproblems: the solution to a higher subproblem depends on the solutions to several of the lower subproblems. Problems with these two properties—optimal substructure and overlapping subproblems—can be approached by a problem-solving technique called dynamic programming, in which the solution is built up starting with the simplest subproblems. The procedure requires memoization—saving the solutions to one level of subproblem in a table (analogous to writing them to a memo, hence the name) so that the solutions are available to the next level of subproblems. This method is illustrated here.
Read more about this topic: Longest Common Subsequence Problem
Famous quotes containing the word solution:
“All the followers of science are fully persuaded that the processes of investigation, if only pushed far enough, will give one certain solution to each question to which they can be applied.... This great law is embodied in the conception of truth and reality. The opinion which is fated to be ultimately agreed to by all who investigate is what we mean by the truth, and the object represented in this opinion is the real.”
—Charles Sanders Peirce (18391914)