Logistic Map - Finding Cycles of Any Length When r = 4

Finding Cycles of Any Length When r = 4

For the r = 4 case, from almost all initial conditions the iterate sequence is chaotic. Nevertheless, there exist an infinite number of initial conditions which lead to cycles, and indeed there exist cycles of length k for all integers k ≥ 1. We can exploit the relationship of the logistic map to the dyadic transformation (also known as the bit-shift map) to find cycles of any length. If x follows the logistic map and y follows the dyadic transformation

then the two are related by

.

The reason that the dyadic transformation is also called the bit-shift map is that when y is written in binary notation, the map moves the binary point one place to the right (and if the bit to the left of the binary point has become a "1", this "1" is changed to a "0"). A cycle of length 3, for example, occurs if an iterate has a 3-bit repeating sequence in its binary expansion (which is not also a one-bit repeating sequence): 001, 010, 100, 110, 101, or 011. The iterate 001001001... maps into 010010010..., which maps into 100100100..., which in turn maps into the original 001001001...; so this is a 3-cycle of the bit shift map. And the other three binary-expansion repeating sequences give the 3-cycle 110110110... → 101101101... → 011011011... → 110110110.... Either of these 3-cycles can be converted to fraction form: for example, the first-given 3-cycle can be written as 1/7 → 2/7 → 4/7 → 1/7. Using the above translation from the bit-shift map to the r = 4 logistic map gives the corresponding logistic cycle .611260467... → .950484434... → .188255099... → .611260467... . We could similarly translate the other bit-shift 3-cycle into its corresponding logistic cycle. Likewise, cycles of any length k can be found in the bit-shift map and then translated into the corresponding logistic cycles.

However, since almost all numbers in [0, 1) are irrational, almost all initial conditions of the bit-shift map lead to the non-periodicity of chaos. This is one way to see that the logistic r = 4 map is chaotic for almost all initial conditions.

Read more about this topic:  Logistic Map

Famous quotes containing the words finding, cycles and/or length:

    Disillusionment in living is finding that no one can really ever be agreeing with you completely in anything.
    Gertrude Stein (1874–1946)

    The stars which shone over Babylon and the stable in Bethlehem still shine as brightly over the Empire State Building and your front yard today. They perform their cycles with the same mathematical precision, and they will continue to affect each thing on earth, including man, as long as the earth exists.
    Linda Goodman (b. 1929)

    A playwright ... is ... the litmus paper of the arts. He’s got to be, because if he isn’t working on the same wave length as the audience, no one would know what in hell he was talking about. He is a kind of psychic journalist, even when he’s great.
    Arthur Miller (b. 1915)