Logical Connective - Computer Science

Computer Science

Truth-functional approach to logical operators is implemented as logic gates in digital circuits. Practically all digital circuits (the major exception is DRAM) are built up from NAND, NOR, NOT, and transmission gates; see more details in Truth function#Computer science. Logical operators over bit vectors (corresponding to finite Boolean algebras) are bitwise operations.

But not any usage of a logical connective in programming has a Boolean semantic. For example, lazy evaluation is sometimes implemented for P ∧ Q and P ∨ Q, so these connectives are not commutative if some of expressions P, Q has side effects. Also, a conditional, which in some sense corresponds to the material conditional connective, is essentially non-Boolean because for if (P) then Q; the consequent Q is not executed if the antecedent P is false (although a compound as a whole is successful ≈ "true" in such case). This is closer to intuitionist and constructivist views on the material conditional, rather than to classical logic's ones.

Read more about this topic:  Logical Connective

Famous quotes containing the words computer and/or science:

    What, then, is the basic difference between today’s computer and an intelligent being? It is that the computer can be made to see but not to perceive. What matters here is not that the computer is without consciousness but that thus far it is incapable of the spontaneous grasp of pattern—a capacity essential to perception and intelligence.
    Rudolf Arnheim (b. 1904)

    Science is feasible when the variables are few and can be enumerated; when their combinations are distinct and clear. We are tending toward the condition of science and aspiring to do it. The artist works out his own formulas; the interest of science lies in the art of making science.
    Paul Valéry (1871–1945)