Introduction and Elimination Rules
As a rule of inference, conjunction introduction is a classically valid, simple argument form. The argument form has two premises, A and B. Intuitively, it permits the inference of their conjunction.
- A,
- B.
- Therefore, A and B.
or in logical operator notation:
Here is an example of an argument that fits the form conjunction introduction:
- Bob likes apples.
- Bob likes oranges.
- Therefore, Bob likes apples and oranges.
Conjunction elimination is another classically valid, simple argument form. Intuitively, it permits the inference from any conjunction of either element of that conjunction.
- A and B.
- Therefore, A.
...or alternately,
- A and B.
- Therefore, B.
In logical operator notation:
...or alternately,
Read more about this topic: Logical Conjunction
Famous quotes containing the words introduction, elimination and/or rules:
“For better or worse, stepparenting is self-conscious parenting. Youre damned if you do, and damned if you dont.”
—Anonymous Parent. Making It as a Stepparent, by Claire Berman, introduction (1980, repr. 1986)
“To reduce the imagination to a state of slaveryeven though it would mean the elimination of what is commonly called happinessis to betray all sense of absolute justice within oneself. Imagination alone offers me some intimation of what can be.”
—André Breton (18961966)
“For rhetoric, he could not ope
His mouth, but out there flew a trope;
And when he happend to break off
I th middle of his speech, or cough,
H had hard words ready to show why,
And tell what rules he did it by;”
—Samuel Butler (16121680)