Logical Conjunction - Introduction and Elimination Rules

Introduction and Elimination Rules

As a rule of inference, conjunction introduction is a classically valid, simple argument form. The argument form has two premises, A and B. Intuitively, it permits the inference of their conjunction.

A,
B.
Therefore, A and B.

or in logical operator notation:

Here is an example of an argument that fits the form conjunction introduction:

Bob likes apples.
Bob likes oranges.
Therefore, Bob likes apples and oranges.

Conjunction elimination is another classically valid, simple argument form. Intuitively, it permits the inference from any conjunction of either element of that conjunction.

A and B.
Therefore, A.

...or alternately,

A and B.
Therefore, B.

In logical operator notation:

...or alternately,

Read more about this topic:  Logical Conjunction

Famous quotes containing the words introduction, elimination and/or rules:

    The role of the stepmother is the most difficult of all, because you can’t ever just be. You’re constantly being tested—by the children, the neighbors, your husband, the relatives, old friends who knew the children’s parents in their first marriage, and by yourself.
    —Anonymous Stepparent. Making It as a Stepparent, by Claire Berman, introduction (1980, repr. 1986)

    To reduce the imagination to a state of slavery—even though it would mean the elimination of what is commonly called happiness—is to betray all sense of absolute justice within oneself. Imagination alone offers me some intimation of what can be.
    André Breton (1896–1966)

    For 350 years we have been taught that reading maketh a full man, conference a ready man and writing an exact man. Football’s place is to add a patina of character, a deference to the rules and a respect for authority.
    Walter Wellesley (Red)