Maximum Likelihood Estimation of Parameters
For determining the maximum likelihood estimators of the log-normal distribution parameters μ and σ, we can use the same procedure as for the normal distribution. To avoid repetition, we observe that
where by ƒL we denote the probability density function of the log-normal distribution and by ƒN that of the normal distribution. Therefore, using the same indices to denote distributions, we can write the log-likelihood function thus:
Since the first term is constant with regard to μ and σ, both logarithmic likelihood functions, ℓL and ℓN, reach their maximum with the same μ and σ. Hence, using the formulas for the normal distribution maximum likelihood parameter estimators and the equality above, we deduce that for the log-normal distribution it holds that
Read more about this topic: Log-normal Distribution
Famous quotes containing the words maximum, likelihood, estimation and/or parameters:
“Probably the only place where a man can feel really secure is in a maximum security prison, except for the imminent threat of release.”
—Germaine Greer (b. 1939)
“Sustained unemployment not only denies parents the opportunity to meet the food, clothing, and shelter needs of their children but also denies them the sense of adequacy, belonging, and worth which being able to do so provides. This increases the likelihood of family problems and decreases the chances of many children to be adequately prepared for school.”
—James P. Comer (20th century)
“No man ever stood lower in my estimation for having a patch in his clothes; yet I am sure that there is greater anxiety, commonly, to have fashionable, or at least clean and unpatched clothes, than to have a sound conscience.”
—Henry David Thoreau (1817–1862)
“What our children have to fear is not the cars on the highways of tomorrow but our own pleasure in calculating the most elegant parameters of their deaths.”
—J.G. (James Graham)