Properties of Commutative Rings
For commutative rings, ideas of algebraic geometry make it natural to take a "small neighborhood" of a ring to be the localization at a prime ideal. A property is said to be local if it can be detected from the local rings. For instance, being a flat module over a commutative ring is a local property, but being a free module is not. See also Localization of a module.
Read more about this topic: Local Property
Famous quotes containing the words properties of, properties and/or rings:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)
“It is told that some divorcees, elated by their freedom, pause on leaving the courthouse to kiss a front pillar, or even walk to the Truckee to hurl their wedding rings into the river; but boys who recover the rings declare they are of the dime-store variety, and accuse the throwers of fraudulent practices.”
—Administration in the State of Neva, U.S. public relief program. Nevada: A Guide to the Silver State (The WPA Guide to Nevada)