Local Property - Properties of Commutative Rings

Properties of Commutative Rings

For commutative rings, ideas of algebraic geometry make it natural to take a "small neighborhood" of a ring to be the localization at a prime ideal. A property is said to be local if it can be detected from the local rings. For instance, being a flat module over a commutative ring is a local property, but being a free module is not. See also Localization of a module.

Read more about this topic:  Local Property

Famous quotes containing the words properties of, properties and/or rings:

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)

    Ye say they all have passed away,
    That noble race and brave;
    That their light canoes have vanished
    From off the crested wave;
    That, mid the forests where they roamed,
    There rings no hunters’ shout;
    But their name is on your waters,
    Ye may not wash it out.
    Lydia Huntley Sigourney (1791–1865)