Local Langlands Conjectures For Other Groups
Borel (1979) and Vogan (1993) discuss the Langlands conjectures for more general groups. As of 2011, the Langlands conjectures for arbitrary reductive groups G are not as precise as the ones for general linear groups, and it is unclear what the correct way of stating them should be. Roughly speaking, admissible representations of a reductive group are grouped into disjoint finite sets called L-packets, which should correspond to some classes of homomorphisms, called L-parameters, from the Weil–Deligne group to the L-group of G.
Langlands (1989) proved the Langlands conjectures for groups over the archimedean local fields R and C by giving the Langlands classification of their irreducible admissible representations (up to infinitesimal equivalence), or, equivalently, of their irreducible -modules.
Gan & Takeda (2011) proved the local Langlands conjectures for the symplectic similitude group GSp(4) and used that in Gan & Takeda (2010) to deduce it for the symplectic group Sp(4).
Read more about this topic: Local Langlands Conjectures
Famous quotes containing the words local, conjectures and/or groups:
“In everyones youthful dreams, philosophy is still vaguely but inseparably, and with singular truth, associated with the East, nor do after years discover its local habitation in the Western world. In comparison with the philosophers of the East, we may say that modern Europe has yet given birth to none.”
—Henry David Thoreau (18171862)
“Our conjectures pass upon us for truths; we will know what we do not know, and often, what we cannot know: so mortifying to our pride is the base suspicion of ignorance.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)
“Trees appeared in groups and singly, revolving coolly and blandly, displaying the latest fashions. The blue dampness of a ravine. A memory of love, disguised as a meadow. Wispy cloudsthe greyhounds of heaven.”
—Vladimir Nabokov (18991977)