Non-archimedean Local Field Theory
For a non-archimedean local field F (with absolute value denoted by |·|), the following objects are important:
- its ring of integers which is a discrete valuation ring, is the closed unit ball of F, and is compact;
- the units in its ring of integers which forms a group and is the unit sphere of F;
- the unique non-zero prime ideal in its ring of integers which is its open unit ball ;
- a generator ϖ of called a uniformizer of F;
- its residue field which is finite (since it is compact and discrete).
Every non-zero element a of F can be written as a = ϖnu with u a unit, and n a unique integer. The normalized valuation of F is the surjective function v : F → Z ∪ {∞} defined by sending a non-zero a to the unique integer n such that a = ϖnu with u a unit, and by sending 0 to ∞. If q is the cardinality of the residue field, the absolute value on F induced by its structure as a local field is given by
An equivalent definition of a non-archimedean local field is that it is a field that is complete with respect to a discrete valuation and whose residue field is finite.
Read more about this topic: Local Field
Famous quotes containing the words local, field and/or theory:
“Eclecticism is the degree zero of contemporary general culture: one listens to reggae, watches a western, eats McDonalds food for lunch and local cuisine for dinner, wears Paris perfume in Tokyo and retro clothes in Hong Kong; knowledge is a matter for TV games. It is easy to find a public for eclectic works.”
—Jean François Lyotard (b. 1924)
“Every woman who visited the Fair made it the center of her orbit. Here was a structure designed by a woman, decorated by women, managed by women, filled with the work of women. Thousands discovered women were not only doing something, but had been working seriously for many generations ... [ellipsis in source] Many of the exhibits were admirable, but if others failed to satisfy experts, what of it?”
—Kate Field (18381908)
“Frankly, these days, without a theory to go with it, I cant see a painting.”
—Tom Wolfe (b. 1931)