Non-archimedean Local Field Theory
For a non-archimedean local field F (with absolute value denoted by |·|), the following objects are important:
- its ring of integers which is a discrete valuation ring, is the closed unit ball of F, and is compact;
- the units in its ring of integers which forms a group and is the unit sphere of F;
- the unique non-zero prime ideal in its ring of integers which is its open unit ball ;
- a generator ϖ of called a uniformizer of F;
- its residue field which is finite (since it is compact and discrete).
Every non-zero element a of F can be written as a = ϖnu with u a unit, and n a unique integer. The normalized valuation of F is the surjective function v : F → Z ∪ {∞} defined by sending a non-zero a to the unique integer n such that a = ϖnu with u a unit, and by sending 0 to ∞. If q is the cardinality of the residue field, the absolute value on F induced by its structure as a local field is given by
An equivalent definition of a non-archimedean local field is that it is a field that is complete with respect to a discrete valuation and whose residue field is finite.
Read more about this topic: Local Field
Famous quotes containing the words local, field and/or theory:
“The local snivels through the fields:
I sit between felt-hatted mums....”
—Philip Larkin (19221986)
“The woman ... turned her melancholy tone into a scolding one. She was not very young, and the wrinkles in her face were filled with drops of water which had fallen from her eyes, which, with the yellowness of her complexion, made a figure not unlike a field in the decline of the year, when the harvest is gathered in and a smart shower of rain has filled the furrows with water. Her voice was so shrill that they all jumped into the coach as fast as they could and drove from the door.”
—Sarah Fielding (17101768)
“The weakness of the man who, when his theory works out into a flagrant contradiction of the facts, concludes So much the worse for the facts: let them be altered, instead of So much the worse for my theory.”
—George Bernard Shaw (18561950)