Non-archimedean Local Field Theory
For a non-archimedean local field F (with absolute value denoted by |·|), the following objects are important:
- its ring of integers which is a discrete valuation ring, is the closed unit ball of F, and is compact;
- the units in its ring of integers which forms a group and is the unit sphere of F;
- the unique non-zero prime ideal in its ring of integers which is its open unit ball ;
- a generator ϖ of called a uniformizer of F;
- its residue field which is finite (since it is compact and discrete).
Every non-zero element a of F can be written as a = ϖnu with u a unit, and n a unique integer. The normalized valuation of F is the surjective function v : F → Z ∪ {∞} defined by sending a non-zero a to the unique integer n such that a = ϖnu with u a unit, and by sending 0 to ∞. If q is the cardinality of the residue field, the absolute value on F induced by its structure as a local field is given by
An equivalent definition of a non-archimedean local field is that it is a field that is complete with respect to a discrete valuation and whose residue field is finite.
Read more about this topic: Local Field
Famous quotes containing the words local, field and/or theory:
“To see ourselves as others see us can be eye-opening. To see others as sharing a nature with ourselves is the merest decency. But it is from the far more difficult achievement of seeing ourselves amongst others, as a local example of the forms human life has locally taken, a case among cases, a world among worlds, that the largeness of mind, without which objectivity is self- congratulation and tolerance a sham, comes.”
—Clifford Geertz (b. 1926)
“Give me the splendid silent sun
with all his beams full-dazzling,
Give me juicy autumnal fruit ripe and red from the orchard,
Give me a field where the unmowd grass grows,
Give me an arbor, give me the trellisd grape,
Give me fresh corn and wheat, give me serene-moving animals teaching content,”
—Walt Whitman (18191892)
“No one thinks anything silly is suitable when they are an adolescent. Such an enormous share of their own behavior is silly that they lose all proper perspective on silliness, like a baker who is nauseated by the sight of his own eclairs. This provides another good argument for the emerging theory that the best use of cryogenics is to freeze all human beings when they are between the ages of twelve and nineteen.”
—Anna Quindlen (20th century)