Non-archimedean Local Field Theory
For a non-archimedean local field F (with absolute value denoted by |·|), the following objects are important:
- its ring of integers which is a discrete valuation ring, is the closed unit ball of F, and is compact;
- the units in its ring of integers which forms a group and is the unit sphere of F;
- the unique non-zero prime ideal in its ring of integers which is its open unit ball ;
- a generator ϖ of called a uniformizer of F;
- its residue field which is finite (since it is compact and discrete).
Every non-zero element a of F can be written as a = ϖnu with u a unit, and n a unique integer. The normalized valuation of F is the surjective function v : F → Z ∪ {∞} defined by sending a non-zero a to the unique integer n such that a = ϖnu with u a unit, and by sending 0 to ∞. If q is the cardinality of the residue field, the absolute value on F induced by its structure as a local field is given by
An equivalent definition of a non-archimedean local field is that it is a field that is complete with respect to a discrete valuation and whose residue field is finite.
Read more about this topic: Local Field
Famous quotes containing the words local, field and/or theory:
“In everyones youthful dreams, philosophy is still vaguely but inseparably, and with singular truth, associated with the East, nor do after years discover its local habitation in the Western world. In comparison with the philosophers of the East, we may say that modern Europe has yet given birth to none.”
—Henry David Thoreau (18171862)
“But the old world was restored and we returned
To the dreary field and workshop, and the immemorial feud
Of rich and poor. Our victory was our defeat.”
—Sir Herbert Read (18931968)
“A theory of the middle class: that it is not to be determined by its financial situation but rather by its relation to government. That is, one could shade down from an actual ruling or governing class to a class hopelessly out of relation to government, thinking of govt as beyond its control, of itself as wholly controlled by govt. Somewhere in between and in gradations is the group that has the sense that govt exists for it, and shapes its consciousness accordingly.”
—Lionel Trilling (19051975)