Induced Absolute Value
Given a locally compact topological field K, an absolute value can be defined as follows. First, consider the additive group of the field. As a locally compact topological group, it has a unique (up to positive scalar multiple) Haar measure μ. The absolute value is defined so as to measure the change in size of a set after multiplying it by an element of K. Specifically, define |·| : K → R by
for any measurable subset X of K (with 0 < μ(X) < ∞). This absolute value does not depend on X nor on the choice of Haar measure (since the same scalar multiple ambiguity will occur in both the numerator and the denominator).
Given such an absolute value on K, a new induced topology can be defined on K. This topology is the same as the original topology. Explicitly, for a positive real number m, define the subset Bm of K by
Then, the Bm make up a neighbourhood basis of 0 in K.
Read more about this topic: Local Field
Famous quotes containing the words induced and/or absolute:
“The classicist, and the naturalist who has much in common with him, refuse to see in the highest works of art anything but the exercise of judgement, sensibility, and skill. The romanticist cannot be satisfied with such a normal standard; for him art is essentially irrationalan experience beyond normality, sometimes destructive of normality, and at the very least evocative of that state of wonder which is the state of mind induced by the immediately inexplicable.”
—Sir Herbert Read (18931968)
“A wise parent humours the desire for independent action, so as to become the friend and advisor when his absolute rule shall cease.”
—Elizabeth Gaskell (18101865)