Local Field - Higher Dimensional Local Fields

Higher Dimensional Local Fields

It is natural to introduce non-archimedean local fields in a uniform geometric way as the field of fractions of the completion of the local ring of a one-dimensional arithmetic scheme of rank 1 at its non-singular point. For generalizations, a local field is sometimes called a one-dimensional local field.

For a non-negative integer n, an n-dimensional local field is a complete discrete valuation field whose residue field is an (n − 1)-dimensional local field. Depending on the definition of local field, a zero-dimensional local field is then either a finite field (with the definition used in this article), or a quasi-finite field, or a perfect field.

From the geometric point of view, n-dimensional local fields with last finite residue field are naturally associated to a complete flag of subschemes of an n-dimensional arithmetic scheme.

Read more about this topic:  Local Field

Famous quotes containing the words higher, dimensional, local and/or fields:

    What is termed Sin is an essential element of progress. Without it the world would stagnate, or grow old, or become colourless. By its curiosity Sin increases the experience of the race. Through its intensified assertion of individualism it saves us from monotony of type. In its rejection of the current notions about morality, it is one with the higher ethics.
    Oscar Wilde (1854–1900)

    I don’t see black people as victims even though we are exploited. Victims are flat, one- dimensional characters, someone rolled over by a steamroller so you have a cardboard person. We are far more resilient and more rounded than that. I will go on showing there’s more to us than our being victimized. Victims are dead.
    Kristin Hunter (b. 1931)

    While it may not heighten our sympathy, wit widens our horizons by its flashes, revealing remote hidden affiliations and drawing laughter from far afield; humor, in contrast, strikes up fellow feeling, and though it does not leap so much across time and space, enriches our insight into the universal in familiar things, lending it a local habitation and a name.
    —Marie Collins Swabey. Comic Laughter, ch. 5, Yale University Press (1961)

    I respect not his labors, his farm where everything has its price, who would carry the landscape, who would carry his God, to market, if he could get anything for him; who goes to market for his god as it is; on whose farm nothing grows free, whose fields bear no crops, whose meadows no flowers, whose trees no fruit, but dollars; who loves not the beauty of his fruits, whose fruits are not ripe for him till they are turned to dollars. Give me the poverty that enjoys true wealth.
    Henry David Thoreau (1817–1862)