Power-reduction Formula
Obtained by solving the second and third versions of the cosine double-angle formula.
Sine | Cosine | Other |
---|---|---|
and in general terms of powers of sin θ or cos θ the following is true, and can be deduced using De Moivre's formula, Euler's formula and binomial theorem.
Cosine | Sine | |
---|---|---|
Read more about this topic: List Of Trigonometric Identities
Famous quotes containing the word formula:
“Its hard enough to adjust [to the lack of control] in the beginning, says a corporate vice president and single mother. But then you realize that everything keeps changing, so you never regain control. I was just learning to take care of the belly-button stump, when it fell off. I had just learned to make formula really efficiently, when Sarah stopped using it.”
—Anne C. Weisberg (20th century)
Related Phrases
Related Words