List of Small Non-abelian Groups
Order | Group | Subgroups | Properties | Cycle Graph |
---|---|---|---|---|
6 | S3 = Dih3 | Z3, Z2 (3) | the smallest non-abelian group | |
8 | Dih4 | Z4, Z22 (2), Z2 (5) | ||
quaternion group, Q8 = Dic2 | Z4 (3), Z2 | the smallest Hamiltonian group; smallest group demonstrating that all subgroups may be normal without the group being abelian; the smallest group G demonstrating that for a normal subgroup H the quotient group G/H need not be isomorphic to a subgroup of G | ||
10 | Dih5 | Z5, Z2 (5) | ||
12 | Dih6 = Dih3 × Z2 | Z6, Dih3 (2), Z22 (3), Z3, Z2 (7) | ||
A4 | Z22, Z3 (4), Z2 (3) | smallest group demonstrating that a group need not have a subgroup of every order that divides the group's order: no subgroup of order 6 (See Lagrange's theorem and the Sylow theorems.) | ||
Dic3 = Z3 Z4 | Z2, Z3, Z4 (3), Z6 | |||
14 | Dih7 | Z7, Z2 (7) | ||
16 | Dih8 | Z8, Dih4 (2), Z22 (4), Z4, Z2 (9) | ||
Dih4 × Z2 | Dih4 (2), Z4 × Z2, Z23 (2), Z22 (11), Z4 (2), Z2 (11) | |||
generalized quaternion group, Q16 = Dic4 | ||||
Q8 × Z2 | Hamiltonian | |||
The order 16 quasidihedral group | ||||
The order 16 modular group | ||||
Z4 Z4 | ||||
The group generated by the Pauli matrices | ||||
G4,4 = Z22 Z4 |
Read more about this topic: List Of Small Groups
Famous quotes containing the words list of, list, small and/or groups:
“Sheathey call him Scholar Jack
Went down the list of the dead.
Officers, seamen, gunners, marines,
The crews of the gig and yawl,
The bearded man and the lad in his teens,
Carpenters, coal-passersall.”
—Joseph I. C. Clarke (18461925)
“I made a list of things I have
to remember and a list
of things I want to forget,
but I see they are the same list.”
—Linda Pastan (b. 1932)
“When I think of this life I have led; the desolation of solitude it has been; the masoned, walled-town of a Captains exclusiveness, which admits but small entrance to any sympathy from the green country withoutoh, weariness! heaviness! Guinea-coast slavery of solitary command!”
—Herman Melville (18191891)
“Under weak government, in a wide, thinly populated country, in the struggle against the raw natural environment and with the free play of economic forces, unified social groups become the transmitters of culture.”
—Johan Huizinga (18721945)