List of Small Abelian Groups
The finite abelian groups are either cyclic groups, or direct products thereof; see abelian groups.
Order | Group | Subgroups | Properties | Cycle graph |
---|---|---|---|---|
1 | trivial group, Z1 = S1 = A2 | - | various properties hold trivially | |
2 | Z2 = S2 = Dih1 | - | simple, the smallest non-trivial group | |
3 | Z3 = A3 | - | simple | |
4 | Z4 | Z2 | ||
Klein four-group, Z 2 2 = Dih2 |
Z2 (3) | the smallest non-cyclic group | ||
5 | Z5 | - | simple | |
6 | Z6 = Z3 × Z2 | Z3, Z2 | ||
7 | Z7 | - | simple | |
8 | Z8 | Z4, Z2 | ||
Z4 × Z2 | Z 2 2, Z4 (2), Z2 (3) |
|||
Z 3 2 |
Z 2 2 (7), Z2 (7) |
the non-identity elements correspond to the points in the Fano plane, the Z2 × Z2 subgroups to the lines | ||
9 | Z9 | Z3 | ||
Z 2 3 |
Z3 (4) | |||
10 | Z10 = Z5 × Z2 | Z5, Z2 | ||
11 | Z11 | - | simple | |
12 | Z12 = Z4 × Z3 | Z6, Z4, Z3, Z2 | ||
Z6 × Z2 = Z3 × Z 2 2 |
Z6 (3), Z3, Z2 (3), Z 2 2 |
|||
13 | Z13 | - | simple | |
14 | Z14 = Z7 × Z2 | Z7, Z2 | ||
15 | Z15 = Z5 × Z3 | Z5, Z3 | multiplication of nimbers 1,...,15 | |
16 | Z16 | Z8, Z4, Z2 | ||
Z 4 2 |
Z2 (15), Z 2 2 (35), Z 3 2 (15) |
addition of nimbers 0,...,15 | ||
Z4 × Z 2 2 |
Z2 (7), Z4 (4), Z 2 2 (7), Z 3 2, Z4 × Z2 (6) |
|||
Z8 × Z2 | Z2 (3), Z4 (2), Z 2 2, Z8 (2), Z4 × Z2 |
|||
Z 2 4 |
Z2 (3), Z4 (6), Z 2 2, Z4 × Z2 (3) |
Read more about this topic: List Of Small Groups
Famous quotes containing the words list of, list, small and/or groups:
“Sheathey call him Scholar Jack
Went down the list of the dead.
Officers, seamen, gunners, marines,
The crews of the gig and yawl,
The bearded man and the lad in his teens,
Carpenters, coal-passersall.”
—Joseph I. C. Clarke (18461925)
“Hey, you dress up our town very nicely. You dont look out the Chamber of Commerce is going to list you in their publicity with the local attractions.”
—Robert M. Fresco, and Jack Arnold. Dr. Matt Hastings (John Agar)
“Even the elephant carries but a small trunk on his journeys. The perfection of traveling is to travel without baggage.”
—Henry David Thoreau (18171862)
“In properly organized groups no faith is required; what is required is simply a little trust and even that only for a little while, for the sooner a man begins to verify all he hears the better it is for him.”
—George Gurdjieff (c. 18771949)