Matrices With Conditions On Eigenvalues or Eigenvectors
Name | Explanation | Notes |
---|---|---|
Companion matrix | A matrix whose eigenvalues are equal to the roots of the polynomial. | |
Convergent matrix | A square matrix whose successive powers approach the zero matrix. | Its eigenvalues have magnitude less than one. |
Defective matrix | A square matrix that does not have a complete basis of eigenvectors, and is thus not diagonalisable. | |
Diagonalizable matrix | A square matrix similar to a diagonal matrix. | It has an eigenbasis, that is, a complete set of linearly independent eigenvectors. |
Hurwitz matrix | A matrix whose eigenvalues have strictly negative real part. A stable system of differential equations may be represented by a Hurwitz matrix. | |
Positive-definite matrix | A Hermitian matrix with every eigenvalue positive. | |
Stability matrix | Synonym for Hurwitz matrix. | |
Stieltjes matrix | A real symmetric positive definite matrix with nonpositive off-diagonal entries. | Special case of an M-matrix. |
Read more about this topic: List Of Matrices
Famous quotes containing the word conditions:
“Any man who does not accept the conditions of life sells his soul.”
—Charles Baudelaire (18211867)