List of Matrices - Matrices Used in Statistics

Matrices Used in Statistics

The following matrices find their main application in statistics and probability theory.

  • Bernoulli matrix — a square matrix with entries +1, −1, with equal probability of each.
  • Centering matrix — a matrix which, when multiplied with a vector, has the same effect as subtracting the mean of the components of the vector from every component.
  • Correlation matrix — a symmetric n×n matrix, formed by the pairwise correlation coefficients of several random variables.
  • Covariance matrix — a symmetric n×n matrix, formed by the pairwise covariances of several random variables. Sometimes called a dispersion matrix.
  • Dispersion matrix — another name for a covariance matrix.
  • Doubly stochastic matrix — a non-negative matrix such that each row and each column sums to 1 (thus the matrix is both left stochastic and right stochastic)
  • Fisher information matrix — a matrix representing the variance of the partial derivative, with respect to a parameter, of the log of the likelihood function of a random variable.
  • Hat matrix - a square matrix used in statistics to relate fitted values to observed values.
  • Precision matrix — a symmetric n×n matrix, formed by inverting the covariance matrix. Also called the information matrix.
  • Stochastic matrix — a non-negative matrix describing a stochastic process. The sum of entries of any row is one.
  • Transition matrix — a matrix representing the probabilities of conditions changing from one state to another in a Markov chain

Read more about this topic:  List Of Matrices

Famous quotes containing the word statistics:

    Maybe a nation that consumes as much booze and dope as we do and has our kind of divorce statistics should pipe down about “character issues.” Either that or just go ahead and determine the presidency with three-legged races and pie-eating contests. It would make better TV.
    —P.J. (Patrick Jake)